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Abstract

Given augmented views of each input graph, contrastive learning methods (e.g.,
InfoNCE) optimize pairwise alignment of graph embeddings across views while
providing no mechanism to control the global structure of the view specific graph-
of-graphs built from these embeddings. We introduce SpecMatch-CL, a novel
loss function that aligns the view specific graph-of-graphs by minimizing the
difference between their normalized Laplacians. Theoretically, we show that
under certain assumptions, the difference between normalized Laplacians provides
an upper bound not only for the difference between the ideal Perfect Alignment
contrastive loss and the current loss, but also for the Uniformly loss [1]. Empirically,
SpecMatch-CL establishes new state of the art on eight TU benchmarks under
unsupervised learning and semi-supervised learning at low label rates, and yields
consistent gains in transfer learning on PPI-306K and ZINC 2M datasets. The
Pytorch implementation for our method is provided in github.com/manhbeo/GNN-
CL.

1 Introduction

Contrastive learning (CL) has become a dominant paradigm for representation learning across
modalities, including graphs [2, 3, 4]. At its core, CL encourages the alignment of positive pairs
while maintaining uniformity in the representation space [1]. In graphs, recent approaches realize
these principles either by manipulating topology through augmentations (e.g. GraphCL and its
automated variants JOAO/JOAOv2) or by contrasting local/global summaries and diffusion-based
views [3, 5, 6, 7, 8]. However, the instance-level nature of InfoNCE leaves an important degree of
freedom: two augmented views can attain similar contrastive objectives while inducing different
global neighborhood structure (e.g., connectivity patterns, cluster margins, and multihop relations).

We address this gap by explicitly regularizing view-to-view spectral consistency. Our method,
SpecMatch-CL, constructs sparse neighborhood graphs from the embeddings of each view and
penalizes the spectral norm of the difference between their normalized Laplacians. Intuitively, if
the spectra match, the induced diffusion geometries –and hence multiscale neighborhoods—are
similar across views, removing degeneracies that alignment alone does not fix. To ground this design,
we show that small Laplacian discrepancy implies not only a small discrepancy of the contrastive
objective relative to its ideal Perfect Alignment counterpart but also a small Uniformity loss, thereby
providing an optimization-agnostic rationale for the novel loss.

Contributions:

1) We propose SpecMatch-CL, a spectral graph-matching regularizer that aligns the normal-
ized Laplacian of view-wise embedding graphs and integrates seamlessly with GraphCL-
style training.
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2) We develop an analysis showing that the spectral loss LG simultaneously controls (i) the
gap between contrastive loss and its Perfect Alignment counterpart and (ii) the Wang–Isola
uniformity objective, which explains how enforcing global spectral alignment benefits both
alignment and uniformity in instance-level contrastive learning.

3) We demonstrate consistent improvements in graph classification under unsupervised and
semi-supervised regimes and in transfer to molecular / biological property prediction, achiev-
ing state-of-the-art results while keeping the training recipe and enhancements unchanged.

2 Related work

2.1 Contrastive learning on graphs

Self-supervised learning on graphs has been largely driven by contrastive objectives that adapt
InfoNCE-style losses to node- and graph-level tasks. Early methods such as Deep Graph Infomax
(DGI) maximize mutual information between local node representations and a global graph summary,
producing strong node-level embeddings without labels [9]. Subsequent work has explored view
generation and augmentation at scale. GraphCL adapts InfoNCE loss to the graph domain by apply-
ing hand-crafted graph augmentations (node drop, edge perturbation, attribute masking, subgraph
sampling) and contrasting two augmented views of each graph, showing that simple GNN backbones
with appropriate augmentations already yield strong unsupervised and transfer performance [3].
GRACE and its adaptive variant GCA extend contrastive learning to node-level pretraining through
structural and feature corruptions [10, 11]. JOAO also automates the selection of augmentations for
GraphCL through a bi-level optimization scheme that chooses augmentations per data set and training
step [5]. Across these methods, the primary focus is on instance-level alignment: embeddings of the
same node or graph under two augmentations are pulled together, while other examples in the batch
serve as negatives. The global geometry of the embedding space—and, in particular, the induced
similarity graph over all graphs within a view—remains largely unconstrained.

Recent theoretical work has begun to reinterpret such contrastive objectives in spectral terms. Tan
et al. prove that, under standard design choices (normalized embeddings and a Gaussian kernel),
minimizing InfoNCE is equivalent to performing spectral clustering on a similarity graph whose edge
weights encode positive-pair sampling probabilities [12]. Complementarily, HaoChen et al. show that
minimizing the Spectral contrast Loss (SCL), defined on an augmentation graph whose nodes are
augmented views and whose edges connect augmentations of the same underlying example, effectively
performs a spectral decomposition of this augmentation graph and produces representations with
provable linear-probe guaranties [13]. Inspired by these spectral perspectives, our work transfers the
idea from an augmentation graph over individual examples to a graph-of-graphs built from graph-level
embeddings within each view: we explicitly regularize the normalized Laplacian of the view-specific
similarity graphs, rather than relying on InfoNCE alone to shape their global structure.

2.2 Alignment and Uniformity

Wang and Isola analyze InfoNCE through two geometric functionals in the feature distribution:
Alignment and Uniformity in the unit hypersphere [1]. Specifically, denote zi, zj ∈ Rd as the
normalized embeddings (zi and zj are in the unit sphere Sd−1), and let ppos(·) and pdata(·) denote the
distribution of positive embeddings in Rd × Rd and the embedding distribution in Rd, respectively.
The Alignment loss measures the expected distance between embeddings of positive pairs:

Lalign = E(zi,zj)∼ppos

∥∥zi − zj
∥∥α
2
, α > 0, (1)

and is small when augmentations of the same instance are mapped to nearby points. Uniformity
instead quantifies how well the embedding distribution spreads out on the hypersphere via a Gaussian
(RBF) potential:

Lunif = log E
zi,zj

iid∼pdata

[
e−t∥zi−zj∥2

2

]
(2)

which is minimized when the embeddings are approximately uniformly distributed in Sd−1. Wang
and Isola show that, in the limit of many negatives and appropriately chosen temperature, the standard
contrastive loss asymptotically optimizes a trade-off between decreasing Lalign (tight clusters for
positives) and decreasing Lunif (globally repulsive, nearly uniform configurations) [1].
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Figure 1: An illustration of SpecMatch-CL method.

Within this framework, they further formalize two idealized regimes. An encoder f is said to achieve
Perfect Alignment if zi = zj almost surely (a.s.) for (zi, zj) ∼ ppos, i.e., all augmentations of the
same instance collapse to a single point on the hypersphere, and it achieves Perfect Uniformity if
the distribution of embeddings pdata(·) is the uniform distribution on the unit sphere Sd−1. Recent
contrastive methods, therefore, minimize both loss to achieve desired performance. Our analysis
further shows that reducing the novel spectral graph matching loss LG not only tightens an upper
bound on the contrastive loss gap to Perfect Alignment but also upper-bounds the Uniformity loss.

3 Method

3.1 Problem definition

In this paper, we focus on graph-level contrastive learning. Let Gi = (Vi, Ei) be an undirected graph,
where Vi = {vk}|Vi|

k=1 is the set of nodes and E = [ekj ] ∈ R|Vi|×|Vi| is the adjacency matrix. Each
node vn is associated with an attribute vector xn ∈ RN , and we collect them into a feature matrix
X ∈ R|Vi|×N with xn = X[n, :]⊤. In the graph-level setting, we are given a collection of unlabeled
graphs

G = {G1,G2, . . . ,GN},
and the goal is to learn an encoder that maps each graph Gi ∈ G to a d-dimensional representation
zi ∈ Rd using only the structure and features of the graphs.

3.2 Graph augmentations

Following the standard two-view contrastive setup in You et al.[3], for a graph Gi ∈ G we sample two
augmented views

Ĝ(1)i , Ĝ(2)i ∼ T ( · | Gi ),
where T ( · | Gi ) is an augmentation distribution conditioned on Gi, encoding prior assumptions about
plausible perturbations of the graph. We consider four basic augmentation operators for constructing
positive pairs of graphs:

1. Node dropping: randomly remove a subset of nodes together with their incident edges;
2. Edge perturbation: randomly add or delete a subset of edges to alter local connectivity;
3. Attribute masking: hide a subset of node features and require the encoder to reconstruct or

ignore the missing information from context;
4. Subgraph sampling: select a subgraph of Gi using, e.g., a random walk procedure.

3.3 Graph encoder

Once the augmented graph pair (Ĝ(1)i , Ĝ(2)i ) is generated, we feed each view into a graph encoder to
obtain their representations. Our framework is agnostic to the specific architecture, but throughout
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we use a graph neural network (GNN) to encode graphs. Specifically, for a view v ∈ {1, 2}, let
Ĝ(v)i = (V(v)

i , E(v)i ) with node features X ∈ R|V(v)
i |×N , where xn = X[n, :]⊤ is the feature vector of

node vn ∈ V(v)
i . Consider an L-layer GNN f(·). The message-passing update at the l-th layer is

a(l)
n = AGGREGATION(l)

(
{h(l−1)

n′ : n′ ∈ N (n)}
)
, (3)

h(l)
n = COMBINE(l)

(
h(l−1)
n , a(l)

n

)
, (4)

where h(l)
n is the embedding of node vn at layer l, initialized with h(0)

n = xn, N (n) denotes set of
nodes adjacent to vn, and AGGREGATION(l)(·) and COMBINE(l)(·) are layer-specific functions
(e.g., mean/sum aggregation and nonlinear transformation).

After L layers of propagation, node embeddings are pooled into a graph-level representation via a
READOUT function (e.g., sum/mean pooling or attention), then a multi-layer perceptron g(·) is used
for downstream graph-level tasks, and the same encoder is shared for all augmented views in the
contrastive learning framework. :

f(Ĝ(v)i ) = READOUT
(
{h(l−1)

n′ : vn ∈ V(v)
i , l ∈ L}

)
,

z
(v)
i = g

(
f(Ĝ(v)i )

)
.

3.4 Contrastive Learning Framework

For the view v ∈ {1, 2}, define the other view as v′. As shown by Chen et al. [2] and Khosla et al.
[14], normalizing the embeddings helps increase the performance

z
(v)
i ← z

(v)
i

∥z(v)i ∥
, z

(v′)
i ← z

(v′)
i

∥z(v
′)

i ∥

For the normalized embeddings, we define the similarity as inner product

s(z
(v)
i , z

(v′)
i ) = z

(v)⊤
i z

(v′)
i

Following the previous works of graph contrastive learning [3] [4] [15], we use normalized
temperature-scaled cross-entropy (InfoNCE) loss [16] as the contrastive objective. The single
sample contrastive loss according to view v can be written as

l
(v)
i = − log

exp(s(z
(v)
i , z

(v′)
i )/τ)∑2

a=1

∑N
k=1 exp

(
s(z

(v)
i , z

(a)
k )/τ

)
· (1− 1{a = v ∧ k = i})

where 1(·) is the indicator function and τ is the temperature. We then have the total contrastive
objective as

LC =

2∑
v=1

N∑
i=1

l
(v)
i .

3.5 Spectral Graph Matching

Given embedding vectors from two views of the data, we optimize the spectral graph matching
algorithm by constructs corresponding graphs and compares their spectral properties to ensure
structural consistency. Particularly, we construct the similarity matrix S(v) whose entries are defined
as:

S
(v)
ij = s(z

(v)
i , z

(v)
j )

The adjacency matrices A(v) are then formed by thresholding the similarities:

A
(v)
ij =

{
1, if S(v)

ij > θ and i ̸= j

0, otherwise

with the similarity threshold θ. An example of the adjacency matrices is shown in Figure 2.
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Figure 2: A 1D example of the adjacency matrix
A with θ = 0.4.

Instead of using a fixed threshold, we determine
the threshold adaptively based on the distribu-
tion of similarity values:

θ = Q(S(v), p),

where Q(S(v), p) is the p-th percentile of the
similarity values in S(v). From each adjacency
matrix, we compute the corresponding degree
matrices D(v) as

D
(v)
ii =

∑
j

A
(v)
ij

The normalized Laplacian matrices are defined as:

L(v) = I −
(
D(v)

)− 1
2

A(v)
(
D(v)

)− 1
2

,

and the spectral graph matching loss is then computed by:

LG = ||L(1) − L(2)||2F .

3.6 SpecMatch-CL loss

The total SpecMatch-CL loss combines the contrastive loss and the spectral graph alignment terms:

L = LC + βLG,

where α balances the contributions of each loss component. Figure 1 provides an illustration for the
process of our method.

4 Theoretical Justification

To theoretically justify SpecMatch-CL, we derive two theorems, built on the Alignment and Unifor-
mity losses introduced by Wang and Isola [1], showing how the spectral graph-matching loss LG

controls both the gap to the Perfect Alignment case and the Uniformity objective.

4.1 LG provides an upper bound for the Contrastive loss gap to Perfect Alignment

In this section, we clarify how the spectral graph-matching loss LG influences the contrastive
objective. Although InfoNCE operates directly on pairwise similarities between embeddings, LG

measures discrepancies between view-wise graph geometries encoded by their normalized Laplacians.
Our goal is to relate these two levels by showing that if the diffusion geometries of the two views are
close, then the realized contrastive loss cannot deviate far from its ideal Perfect Alignment value.

While LG penalizes discrepancies between the two view-wise normalized Laplacians, the contrastive
objective acts on pairwise similarities between learned embeddings. To connect the two levels of
abstraction, we employ the diffusion (heat) kernel [17, 18] as a geometry-aware operator on the
graphs induced by each view. Concretely, with a diffusion scale td > 0, we define the heat kernel
for each view v as P (v) := exp(−tdL(v)), then the associated diffusion distance for each input
instance is

∥∥P (1) − P (2)
∥∥2
F

. We posit a mild consistency link between the distances between the two
embeddings and the distances their induced diffusion geometries drift. Intuitively, if the embeddings
of a positive pair are separate, the neighborhoods they activate in the two views should also look
different.

Assumption 4.1. We assume that there exist a constant c for input graphs G such that

N∑
i=1

∥∥∥z(1)i − z
(2)
i

∥∥∥2
2
≤ c

∥∥∥P (1) − P (2)
∥∥∥2
F

5



This implies that diffusion mismatch upper-bounds embedding mismatch up to a data-dependent factor
c. The assumption is violated in the degenerate case

∥∥P (1) − P (2)
∥∥2
F
= 0, i.e., when P (1) = P (2)

(equivalently L(1) = L(2)) and the two view-induced graphs are identical, which is rare in practice.
With that assumption, we introduce the theorem:

Theorem 4.2. Under Assumption 4.1 we have

|LC − L∗
C | ≤

(td)
2c

τ
LG

a.s. over (z(1)i , z
(2)
i ) ∼ ppos, where τ is the temperature in contrastive loss and td is the diffusion

scale.

The proof for Theorem 4.2 is provided in Appendix A.

Discussion. Under Assumption 4.1, the theorem establishes a link between the spectral alignment
and the contrastive objective: a reduction in the spectral graph-matching loss LG produces a provably
tighter upper bound on the deviation between the realized contrastive loss and its Perfect Alignment
counterpart. This observation provides a rationale for adding the graph matching loss: by constraining
the view-wise Laplacians to be close, not only the geometry of the two views are aligned but also
the contrastive objective becomes closer to its ideal value, which is consistent with improvements in
unsupervised, semi-supervised and transfer accuracy as shown in the experiment section.

4.2 LG provides an upper bound for the Uniformity loss

Having established that the spectral graph-matching loss LG controls the deviation from the Perfect
Alignment contrastive objective, we now turn to its effect on uniformity. Recall that, in the Wang–
Isola framework, uniformity quantifies how well the embedding distribution spreads out on the
unit sphere, penalizing collapsed or highly clustered configurations. Our goal here is to show that
enforcing a small spectral discrepancy between view-wise Laplacians also drives the encoder toward
low uniformity loss, i.e., toward a more evenly dispersed configuration of graph-level embeddings.
Intuitively, if the two views induce similar diffusion geometries on the same node set, then their
embeddings cannot concentrate in a few narrow regions without incurring a large Laplacian mismatch.

Assume that each augmentation graph is connected; denote d(v)i := D
(v)
ii as the ith diagonal elements

of D(v) and λ2 as the smallest non-zero eigenvalue of the normalized Laplacian matrix L. In addition,
let the distribution of L (over the randomness of the augmentations) be conditional on the set of input
graphs G as PL|G . Additionally, denote L := EL∼PL|G [L] and λ2 as the smallest non-zero eigenvalue
of L. Recall the Wang–Isola uniformity potential at temperature t > 0:

Lunif = log E
zi,zj

iid∼pdata

[
e−t∥zi−zj∥2

2

]
.

Let Z be the matrix of embeddings used to construct L. For embeddings zi (rows of Z), let the
degree-weighted mean be

µ :=
1∑N

k=1 dk

N∑
i=1

dizi.

Theorem 4.3. Assume that each augmentation graph is connected and L(1) and L(2) are i.i.d.
(conditional on G). We have

Lunif ≤
1− e−4t

2
√
2

(
3

2
− E

[
∥µ∥22

]) √
EL(1),L(2)∼PL|G

[LG]−
(1− e−4t)

2
λ2(1− E

[
∥µ∥22

]
),

where t is the temperature parameter of the Uniformity loss.

The proof for Theorem 4.3 is provided in Appendix B.
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Discussion. Theorem 4.3 links our spectral regularizer directly to the Wang–Isola uniformity
objective. The first term on the right-hand side shows that Lunif grows at most like

√
E[LG], so

reducing the spectral graph-matching loss tightens a nontrivial upper bound on uniformity: better
spectral alignment between views forces the embedding distribution to be more spread out. The term
|µ|22 is the squared norm of the degree-weighted mean embedding: when representations are well
balanced on the sphere, |µ|22 is small and (1− E

[
|µ|22

]
) is close to one, strengthening the negative

contribution of the second term; when the encoder collapses the mass into a few directions, |µ|22 grows
and the bound weakens. The dependence on λ2, the smallest non-zero eigenvalue of the expected
normalized Laplacian, ties uniformity to graph connectivity: a larger spectral gap (better-connected
similarity graph) tightens the bound and promotes more uniform embeddings.
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Figure 3: Lalign − Lunif plot for contrastive learning with
and without the spectral graph matching loss on NCI1 dataset.
The numbers around the points are the indexes of epochs.
For both Lalign and Lunif , lower is better.

We empirically assess the impact of
the spectral graph-matching loss by
tracking checkpoints of contrastive
training with and without this term
every two epochs when training on
NCI1 dataset and plotting their align-
ment and uniformity losses in Fig-
ure 3. In this experiment, we use
α = 2 for Lalign, t = 2 for Lunif ,
and β = 0.5. While both vari-
ants progressively improve Lalign and
Lunif , the model with the spectral
graph-matching loss achieves consis-
tently faster reductions in both met-
rics. Taken together, the theorems
show that minimizing LG simultane-
ously pulls the contrastive loss toward
its Perfect Alignment limit and acts as
a spectral surrogate for the uniformity
criterion, providing a unified explana-
tion for the empirical gains observed
across unsupervised, semi-supervised,
and transfer settings.

5 Experiments

We evaluate SpecMatch-CL to test whether spectral graph matching consistently improves over strong
contrastive baselines, covering three regimes: unsupervised learning, semi-supervised learning (both
are conducted on TU benchmarks), and transfer learning from large-scale pre-training to molecular
and biological prediction tasks.

5.1 Experimental Setup

Training framework and hyperparameters We adopt the GraphCL training framework as the
base [3]. We follow its default augmentation strength (0.2) and choose augmentation operators by
data regime: for biochemical molecules, we apply node dropping and subgraph extraction; for dense
social networks, we use all four operators; and for sparse social networks, we use all except attribute
masking. For our adaptive similarity threshold, we set the percentile to p=80 by default (ablation
reported in Appendix C). We align our backbones and hyperparameters with widely used settings to
ensure comparability across regimes. (1) Unsupervised representation learning: we use GIN with
3 layers and 32 hidden dimensions [19]. (2) Semi-supervised learning: we use a 5-layer ResGCN
with 128 hidden dimensions [20]. (3) Transfer learning: we use GIN with 5 layers and 300 hidden
dimensions, following standard practice [21]. Unless specified, the weight of our spectral loss is
β ∈ {0.5, 0.75, 1.0, 1.25, 1.5}, selected by grid search (for ablation study of β, see Appendix D).

Datasets For unsupervised and semi-supervised graph-level learning, we follow standard practice
and evaluate on the TU benchmark collection [22], which comprises social network graphs: COLLAB,
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Table 1: Graph classification accuracy (%) on benchmark datasets under unsupervised training. Best
results are presented in bold

Method NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

WL 80.01±0.50 72.92±0.56 74.02±2.28 80.72±3.00 60.30±3.44 68.82±0.41 46.06±0.21 72.30±3.44
DGK 80.31±0.46 73.30±0.82 74.85±0.74 87.44±2.72 64.66±0.50 78.04±0.39 41.27±0.18 66.96±0.56

sub2vec 52.84±1.47 53.03±5.55 54.33±2.44 61.05±15.80 55.26±1.54 71.48±0.41 36.68±0.42 55.26±1.54
node2vec 54.89±1.61 57.49±3.57 74.77±0.51 72.63±10.20 54.57±0.37 72.76±0.92 31.09±0.14 58.02±2.30
graph2vec 73.22±1.81 73.30±2.05 70.32±2.32 83.15±9.25 71.10±0.54 75.48±1.03 47.86±0.26 71.10±0.54

InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 70.65±1.13 82.50±1.42 53.46±1.03 73.03±0.87
GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 71.36±1.15 89.53±0.84 55.99±0.28 71.14±0.44
JOAO 78.07±0.47 74.55±0.41 77.32±0.54 87.35±1.02 69.50±0.36 85.29±1.35 55.74±0.63 70.21±0.38
JOAO V2 78.36±0.53 74.07±1.10 77.40±1.15 87.67±0.79 69.33±0.34 86.42±1.45 56.03±0.27 70.83±0.25
SimGRACE 79.12±0.44 75.35±0.09 77.44±1.11 89.01±1.31 71.72±0.82 89.51±0.89 55.91±0.34 71.26±0.74
MSSGCL 81.45±0.48 75.49±0.70 79.73±0.44 89.68±0.57 73.48±0.83 91.08±0.78 56.17±0.18 73.14±0.38
CuCo 79.24±0.56 75.91±0.55 79.20±1.12 90.55±0.98 72.30±0.34 88.6±0.55 56.49±0.19 72.33±0.22

SpecMatch-CL 81.86±0.36 76.69±0.50 81.12±1.04 90.87±0.75 74.26±0.94 91.31±0.79 57.22±1.20 73.35±0.44

IMDB-B/M, RDT-B, RDT-M5K, commonly traced to graph kernel benchmarks [23, 24], as well as
biochemical molecule datasets: MUTAG, NCI1, PROTEINS, DD. For transfer learning, we pre-train
on large unlabeled dataset ZINC 2M (from the ZINC database) [25] and PPI-306K (as in graph
pre-training protocols) [26]—and fine-tune on downstream suites: molecular property prediction tasks
from MoleculeNet: BBBP, ToxCast, SIDER, ClinTox, MUV, HIV, BACE [27], and protein–protein
interaction classification dataset PPI [28].

Evaluation protocols Following widely adopted evaluation protocols for graph-level self-
supervised learning [7, 3, 5, 6], we assess generalization in both unsupervised and semi-supervised
regimes. In the unsupervised setting, we train SpecMatch-CL on the full training graphs to obtain
graph-level embeddings and then fit a downstream linear SVM with 10-fold cross-validation on each
dataset [29]. In the semi-supervised setting, we pre-train GNNs with SpecMatch-CL on all available
training graphs and fine-tune with the prescribed label-rate protocol (stratified K-fold when explicit
splits are unavailable; otherwise train/val/test splits as provided by the benchmark). Hyperparameters
for fine-tuning are selected on validation sets; we report mean and standard deviation over multiple
random seeds.

Baselines We compare SpecMatch-CL against (i) classical graph-kernel methods: Weis-
feiler–Lehman (WL) [24] and Deep Graph Kernels (DGK) [23]; (ii) unsupervised graph embed-
ding baselines—sub2vec [30], node2vec [31], and graph2vec [29]; and (iii) representative graph
contrastive/self-supervised methods—InfoGraph [7], GraphCL [3], JOAO and JOAOv2 [5, 6], Sim-
GRACE [32], Multi-Scale Subgraph Contrastive Learning (MSSGCL) [15], and CuCo (Curriculum
Contrastive Learning) [4]. All baselines are trained under their recommended settings to ensure
comparability.

5.2 Unsupervised training

As shown in Table 1, under the same GraphCL training recipe and augmentation strength, SpecMatch-
CL attains state-of-the-art accuracy on all eight TU benchmarks. Compared with the strongest prior
method on each dataset, it improves performance by about 0.61 percentage points on average (e.g.,
+0.41 on NCI1, +0.78 on PROTEINS, +1.39 on DD, +0.32 on MUTAG, +0.78 on COLLAB,
+0.23 on RDT-B, +0.73 on RDT-M5K, and +0.21 on IMDB-B). These consistent gains indicate that
enforcing view-to-view spectral alignment provides complementary benefits to standard instance-level
objectives and augmentation design, leading to uniformly stronger graph-level representations under
unsupervised pretraining.

5.3 Semi-supervised training

Table 2 shows that at the 1% label rate, SpecMatch-CL surpasses the strongest baselines on both
datasets with available splits, reaching 65.12 on NCI1 and 65.86 on COLLAB, which corresponds
to improvements of +0.49 and +0.84 points over MSSGCL, respectively. At the 10% label rate,
SpecMatch-CL achieves the best results on 5 out of 6 datasets: NCI1 (75.67, +0.81 vs. Info-
max/JOAOv2 at 74.86), DD (79.21, +0.32 vs. MSSGCL), COLLAB (76.55, +0.53 vs. MSSGCL),
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Table 2: Results (%) on semi-supervised graph classification. "−" indicates that label rate is too low
for the given dataset size

LR Methods NCI1 PROTEINS DD COLLAB RDT-B RDT-M5K

1%

No pre-train. 60.72 ± 0.45 – – 57.46 ± 0.25 – –
Augmentations 60.49 ± 0.46 – – 58.40 ± 0.97 – –
GAE 61.63 ± 0.84 – – 63.20 ± 0.67 – –
Infomax 62.72 ± 0.65 – – 61.70 ± 0.77 – –
ContextPred 61.21 ± 0.77 – – 57.60 ± 2.07 – –
GraphCL 62.55 ± 0.86 – – 64.57 ± 1.15 – –
JOAO 61.97 ± 0.72 – – 63.71 ± 0.84 – –
JOAOv2 62.52 ± 1.16 – – 64.51 ± 2.21 – –
SimGRACE 64.21 ± 0.65 – – 64.28 ± 0.98 – –
MSSGCL 64.63 ± 0.75 – – 65.02 ± 0.78 – –
SpecMatch-CL 65.12 ± 0.65 – – 65.86± 0.98 – –

10%

No pre-train. 73.72 ± 0.24 70.40 ± 1.54 73.56 ± 0.41 73.71 ± 0.27 86.63 ± 0.27 51.33 ± 0.44
Augmentations 73.59 ± 0.32 70.29 ± 0.64 74.30 ± 0.81 74.19 ± 0.13 87.74 ± 0.39 52.01 ± 0.20
GAE 74.36 ± 0.24 70.51 ± 0.17 74.54 ± 0.68 75.09 ± 0.19 87.69 ± 0.40 33.58 ± 0.13
Infomax 74.86 ± 0.26 72.27 ± 0.40 75.78 ± 0.34 73.76 ± 0.29 88.66 ± 0.95 53.61 ± 0.31
ContextPred 73.00 ± 0.30 70.23 ± 0.63 74.66 ± 0.51 73.69 ± 0.37 84.76 ± 0.52 51.23 ± 0.84
GraphCL 74.63 ± 0.25 74.17 ± 0.34 76.17 ± 1.37 74.23 ± 0.21 89.11 ± 0.19 52.55 ± 0.45
JOAO 74.48 ± 0.27 72.13 ± 0.92 75.69 ± 0.67 75.30 ± 0.32 88.14 ± 0.25 52.83 ± 0.54
JOAOv2 74.86± 0.39 73.31 ± 0.48 75.81 ± 0.73 75.53 ± 0.18 88.79 ± 0.65 52.71 ± 0.28
SimGRACE 74.60 ± 0.41 74.03 ± 0.51 76.48 ± 0.52 74.74 ± 0.28 88.86 ± 0.62 53.97 ± 0.64
MSSGCL 74.77 ± 0.31 75.76 ± 0.52 78.89 ± 0.18 76.02 ± 0.13 90.58 ± 0.34 54.36 ± 0.24
SpecMatch-CL 75.67 ± 0.31 75.06 ± 0.68 79.21 ± 1.12 76.55 ± 0.34 91.86 ± 0.42 55.26± 0.35

Table 3: Transfer learning results (ROC-AUC %) on benchmark datasets.

Pre-Train dataset PPI-306K ZINC 2M

Pre-Train dataset PPI Tox21 ToxCast Sider ClinTox MUV HIV BBBP Bace

No Pre-Train 64.8(1.0) 74.6(0.4) 61.7(0.5) 58.2(1.7) 58.4(6.4) 70.7(1.8) 75.5(0.8) 65.7(3.3) 72.4(3.8)
EdgePred 65.7(1.3) 76.0(0.6) 64.1(0.6) 60.4(0.7) 64.1(3.7) 75.1(1.2) 76.3(1.0) 67.3(2.4) 77.3(3.5)
AttrMasking 65.2(1.6) 75.1(0.9) 63.3(0.9) 60.5(0.9) 73.5(4.3) 75.8(1.0) 75.3(1.5) 65.2(1.4) 77.8(1.8)
ContextPred 64.4(1.3) 73.6(0.3) 62.6(0.6) 59.7(1.8) 74.0(3.4) 72.5(1.5) 75.6(1.0) 70.6(1.5) 78.8(1.2)
GraphCL 67.88(0.85) 75.1(0.7) 63.0(0.4) 59.8(1.3) 77.5(3.8) 76.4(0.4) 75.1(0.7) 67.8(2.4) 74.6(2.1)
JOAO 64.43(1.38) 74.8(0.6) 62.8(0.7) 60.4(1.5) 66.6(3.1) 76.6(1.7) 76.9(0.7) 66.4(1.0) 73.2(1.6)
SimGRACE 70.25(1.22) 75.6(0.5) 63.4(0.5) 60.6(1.0) 75.6(3.0) 76.9(1.3) 75.2(0.9) 71.3(0.9) 75.0(1.7)

SpecMatch-CL 71.75(0.82) 76.97(0.45) 64.22(0.45) 62.44(1.22) 77.78(3.2) 78.86(1.37) 76.25(0.8) 72.88(1.2) 76.93(1.8)

RDT-B (91.86, +1.28 vs. MSSGCL), and RDT-M5K (55.26, +0.90 vs. MSSGCL), while remaining
competitive on PROTEINS (75.06 vs. 75.76 for MSSGCL). These results suggest that enforcing
view-to-view spectral consistency is particularly beneficial when labels are limited and when preserv-
ing multi-hop neighborhood structure is critical, while maintaining strong performance in settings
where existing augmentations already regularize the geometry.

5.4 Transfer learning

Pre-training with SpecMatch-CL transfers strongly across biochemistry and biology tasks (Table 3),
attaining the best ROC-AUC on 7 out of 9 downstream datasets and delivering an average gain of
roughly +0.64 points over the strongest baseline per dataset. Improvements are substantial on PPI
(71.75 vs. 70.25, +1.50), Tox21 (76.97 vs. 76.00, +0.97), SIDER (62.44 vs. 60.60, +1.84), MUV
(78.86 vs. 76.90, +1.96), and BBBP (72.88 vs. 71.30, +1.58), with a more modest gain on ToxCast
(64.22 vs. 64.10, +0.12) and ClinTox (77.78 vs. 77.50, +0.28). Performance is competitive on
HIV (within 0.65 of the best score of 76.9) and trails on BACE (76.93 vs. 78.8, −1.87), suggesting
that endpoint-specific structure (e.g., motif sensitivity) may warrant tuning of the spectral loss and
diffusion parameters on certain targets.

6 Conclusion

We presented SpecMatch-CL, a simple and effective loss that enforces view-to-view spectral align-
ment in graph contrastive learning. By matching the spectra of normalized Laplacians, the method
preserves multi-scale neighborhood structure across augmentations and complements the align-
ment–uniformity trade-off optimized by InfoNCE. Our diffusion-kernel analysis further shows that

9



the spectral graph-matching loss LG simultaneously controls the gap to the Perfect Alignment con-
trastive objective and upper-bounds the Wang–Isola Uniformity loss, yielding a model-agnostic
theoretical justification for the graph-matching loss. Empirically, SpecMatch-CL delivers consis-
tent improvements on unsupervised and semi-supervised TU benchmarks and strengthens transfer
performance on diverse molecular and biological datasets, all within a standard GraphCL training
pipeline. Limitations include sensitivity to graph-construction choices (e.g., similarity threshold) and
to the spectral graph-matching loss weight β, although we observe broad robustness across datasets in
practice. Future directions include adaptive scheduling of the graph-matching loss weight, extensions
to node-level and heterogeneous graphs, alternative spectral penalties (e.g., Ky–Fan norms), and
multi-view generalizations that jointly align more than two augmented graphs.
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A Proof for Theorem 4.2

Since the Laplacian matrices are symmetric positive semi-definite, we have ∥e−uL(1)∥2 ≤ 1 and
∥e−uL(2)∥2 ≤ 1 for all u > 0. We now prove that

∥P (1) − P (2)∥2F ≤ (td)
2 · LG

using the Duhamel formula [33].
Let G(k) = e−(td−k)L(1)

e−kL(2)

. We then have G(0) = e−tdL
(1)

and G(td) = e−tdL
(2)

. Differenti-
ate:

d

dk
G(k) = e−(td−k)L(1)

(L(1) − L(2))e−kL(2)

⇒e−tdL
(2)

− e−tdL
(1)

=

∫ td

0

e−(td−k)L(1)

(L(1) − L(2))e−kL(2)

dk

By submultiplicativity of matrix norms we get∥∥∥P (1) − P (2)
∥∥∥
F
= ∥e−tdL

(1)

− e−tdL
(2)

∥F ≤
∫ td

0

∥e−(td−k)L(1)

∥2 ∥L(1) − L(2)∥F ∥e−kL(2)

∥2 dk

Since ∥e−(td−k)L(1)∥2 ≤ 1 and ∥e−kL(2)∥2 ≤ 1, we have∥∥∥P (1) − P (2)
∥∥∥
F
≤ ∥L(1) − L(2)∥F

∫ td

0

1 dk

= td ∥L(1) − L(2)∥F ,

which means ∥∥∥P (1) − P (2)
∥∥∥2
F
≤ (td)

2 · LG

Because the embedding vectors are normalized, we have

s(z
(1)
i , z

(2)
i ) = 1− 1

2
∥z(1)i − z

(2)
i ∥

2
2

Let z∗(1)i and z
∗(2)
i be the embedding vectors in the Perfect Alignment case. When z

∗(1)
i = z

∗(2)
i , we

have ∥z∗(1)i − z
∗(2)
i ∥22 = 0.

Since all embedding vectors are unit-norm, if z∗(1)i = z
∗(2)
i we have∣∣∣s(z(1)i , z

(2)
i )− s(z

∗(1)
i , z

∗(2)
i )

∣∣∣ = ∣∣∣∣1− 1

2
∥z(1)i − z

(2)
i ∥

2
2 − 1 +

1

2
∥z∗(1)i − z

∗(2)
i ∥22

∣∣∣∣
=

∣∣∣∣0− 1

2
∥z(1)i − z

(2)
i ∥

2
2 + 0

∣∣∣∣
=

1

2
∥z(1)i − z

(2)
i ∥

2
2
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Note that we can write the single sample contrastive loss as

l
(v)
i = − log

exp(s(z
(v)
i , z

(v′)
i )/τ)∑2

a=1

∑N
k=1 exp

(
s(z

(v)
i , z

(a)
k )/τ

)
· (1− 1{a = v ∧ k = i})

= − log
exp(s(z

(v)
i , z

(v′)
i )/τ)

exp(s(z
(v)
i , z

(v′)
i )/τ) +

∑2
a=1

∑N
k=1 exp

(
s(z

(v)
i , z

(a)
k )/τ

)
· (1− 1{k = i})

= −s(z
(v)
i , z

(v′)
i )

τ
+ log

(
exp(s(z

(v)
i , z

(v′)
i )/τ) +

2∑
a=1

N∑
k=1

exp
(
s(z

(v)
i , z

(a)
k )/τ

)
· (1− 1{k = i})

)

Taking the derivative of l(v)i with respect to s(z
(v)
i , z

(v′)
i ) gives:

∂l
(v)
i

∂s(z
(v)
i , z

(v′)
i )

=
1

τ

(
exp(s(z

(v)
i , z

(v′)
i )/τ)

exp(s(z
(v)
i , z

(v′)
i )/τ) +

∑2
a=1

∑N
k=1 exp

(
s(z

(v)
i , z

(a)
k )/τ

)
· (1− 1{k = i})

− 1

)

Note that

exp(s(z
(v)
i , z

(v′)
i )/τ)

exp(s(z
(v)
i , z

(v′)
i )/τ) +

∑2
a=1

∑N
k=1 exp

(
s(z

(v)
i , z

(a)
k )/τ

)
· (1− 1{k = i})

∈ [0, 1],

which means ∣∣∣∣∣ ∂l
(v)
i

∂s(z
(v)
i , z

(v′)
i )

∣∣∣∣∣ ≤ 1

τ

So l
(v)
i is 1

τ -Lipschitz in s(z
(v)
i , z

(v′)
i ). If z∗(1)i = z

∗(2)
i we have

∣∣∣l(v)i − l
∗(v)
i

∣∣∣ ≤ 1

τ

∣∣∣s(z(v)i , z
(v′)
i )− s(z

∗(v)
i , z

∗(v′)
i )

∣∣∣
=

1

2τ
∥z(1)i − z

(2)
i ∥

2
2

Therefore

|LC − L∗
C | =

∣∣∣∣∣
2∑

v=1

N∑
i=1

l
(v)
i −

2∑
v=1

N∑
i=1

l
∗(v)
i

∣∣∣∣∣
≤

2∑
v=1

N∑
i=1

∣∣∣l(v)i − l
∗(v)
i

∣∣∣
(by Triangle inequality)

≤
N∑
i=1

2

2τ
∥z(1)i − z

(2)
i ∥

2
2

≤ (td)
2 2c

2τ
LG

=
(td)

2c

τ
LG

a.s. over (z(1)i , z
(2)
i ) ∼ ppos.
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B Proof for Theorem 4.3

By the independent assumption

EL(1),L(2)∼PL|G
[LG] = EL(1),L(2)∼PL|G

[
∥L(1) − L(2)∥2F

]
= EL(1),L(2)∼PL|G

[
∥L(1) − L− L(2) + L∥2F

]
= EL(1),L(2)∼PL|G

[
∥L(1) − L∥2F + ∥L(2) − L∥2F − 2 tr

(
(L(1) − L)⊤(L(2) − L)

)]
= EL(1)∼PL|G

[
∥L(1) − L∥2F

]
+ EL(2)∼PL|G

[
∥L(2) − L∥2F

]
−

2
∑
i,j

EL(1),L(2)∼PL|G

[
(L(1) − L)ij(L

(2) − L)ij

]
= 2EL∼PL|G

[
∥L− L∥2F

]
−

2
∑
i,j

EL(1)∼PL|G

[
(L(1) − L)ij

]
EL(2)∼PL|G

[
(L(2) − L)ij

]
= 2EL∼PL|G

[
∥L− L∥2F

]
.

By Hoffman–Wielandt inequality [34], we have(
λ2 − λ2

)2 ≤ ∥L− L∥2F ,

which means

EL∼PL|G

[
(λ2 − λ2)

2
]
≤ 1

2
EL(1),L(2)∼PL|G

[LG].

For any x,

x⊤Lx = x⊤x− x⊤D−1/2AD−1/2x

=
1

2

∑
i,j

Aij

(
xi√
di
− xj√

dj

)2

.

Let u1 =
D1/21

∥D1/21∥
(the eigenvector of L for eigenvalue 0). By Rayleigh-Ritz theorem (see [35]), we

have

λ2 = min
x ̸=0
x⊥u1

x⊤Lx

∥x∥22

⇒ x⊤Lx ≥ λ2 ∥x∥22 ∀x ⊥ u1.

Let Z be the matrix of embeddings used to construct L. For all columns Z:,r of Z we then define

G:,r := Z:,r − µr1,

xr := D
1
2G:,r.

Notice that

x⊤
r u1 =

1

∥D1/21∥

(
D

1
2 (Z:,r − µr1)

)⊤
D1/21

=
1

∥D1/21∥

N∑
i=1

di(zi,r − µr)

=
1

∥D1/21∥

(
N∑
i=1

dizi,r − µr

N∑
i=1

di

)
= 0,
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which means

x⊤
r Lxr ≥ λ2∥xr∥22,

⇒ 1

2

∑
i,j

Aij (Gi,r −Gj,r)
2 ≥ λ2

∑
i

di(Gi,r)
2

⇒ 1

2

∑
i,j

Aij (Zi,r − Zj,r)
2 ≥ λ2

∑
i

di(Zi,r − µr)
2

⇒ 1

2

∑
i,j

Aij∥zi − zj∥22 ≥ λ2

∑
i

di∥zi − µ∥22

⇒ 1

2

∑
i,j

Aij∑
k dk
∥zi − zj∥22 =

1

2

∑
i,j

Aij∑
i,j Aij

∥zi − zj∥22 ≥ λ2

∑
i

di∑
k dk
∥zi − µ∥22

If we pick i with probability πi = di/
∑

k dk then pick j with probability Pij = Aij/di, the joint
probability of the ordered pair (i, j) is

P{(i, j)} = πiPij =
di∑
k dk

· Aij

di
=

Aij∑
k dk

=
Aij∑
i,j Aij

We also have

λ2

∑
i

di∑
k dk
∥zi − µ∥22 =

λ2∑
k dk

∑
i

di(∥zi∥22 + ∥µ∥22 − 2z⊤i µ)

= λ2

(
1 + ∥µ∥22 − 2µ⊤

∑
i dizi∑
k dk

)
= λ2(1 + ∥µ∥22 − 2∥µ∥22)
= λ2(1− ∥µ∥22),

which means
1

2
E(i,j)∼πP

[
∥zi − zj∥22

]
≥ λ2(1− ∥µ∥22)

However, since all embeddings are normalized, we know that Aij = 1 if and only if z⊤i zj ≥ θ, or

1− 1

2
∥zi − zj∥22 ≥ θ

⇔ ∥zi − zj∥22 ≤ 2− 2θ.

Hence, E(i,j)∼πP

[
∥zi − zj∥22

]
= E

zi,zj
iid∼pdata

[
∥zi − zj∥22

∣∣ ∥zi − zj∥22 ≤ 2− 2θ
]
. Let p be the

probability of ∥zi − zj∥22 ≤ 2− 2θ; we have

E
zi,zj

iid∼pdata

[
∥zi − zj∥22

]
= pE

zi,zj
iid∼pdata

[
∥zi − zj∥22

∣∣ ∥zi − zj∥22 ≤ 2− 2θ
]
+

(1− p)E
zi,zj

iid∼pdata

[
∥zi − zj∥22

∣∣ ∥zi − zj∥22 > 2− 2θ
]

We also have

E
zi,zj

iid∼pdata

[
∥zi − zj∥22

∣∣ ∥zi − zj∥22 ≤ 2− 2θ
]
≤ 2− 2θ

≤ E
zi,zj

iid∼pdata

[
∥zi − zj∥22

∣∣ ∥zi − zj∥22 > 2− 2θ
]
,

which means

E
zi,zj

iid∼pdata

[
∥zi − zj∥22

]
≥ E

zi,zj
iid∼pdata

[
∥zi − zj∥22

∣∣ ∥zi − zj∥22 ≤ 2− 2θ
]
.

With ∥zi − zj∥22 ∈ [0, 4], by the convexity of e−tx we have

e−t∥zi−zj∥2
2 ≤ e−t·0 +

e−t·4 − 1

4− 0
(∥zi − zj∥22 − 0) = 1− 1− e−4t

4
∥zi − zj∥22.

16



Therefore,

Lunif = log E
zi,zj

iid∼pdata

[
e−t∥zi−zj∥2

2

]
≤ log E

zi,zj
iid∼pdata

[
1− 1− e−4t

4
∥zi − zj∥22

]
≤ −1− e−4t

4
E
zi,zj

iid∼pdata

[
∥zi − zj∥22

]
≤ −1− e−4t

4
E(i,j)∼πP

[
∥zi − zj∥22

]
≤ −1− e−4t

2
λ2(1− ∥µ∥22),

which means

EL(1),L(2)∼PL|G
[Lunif] = Lunif ≤ −

1− e−4t

2
EL∼PL|G

[
λ2(1− ∥µ∥22)

]
.

By Cauchy–Schwarz,

E
[
λ2(1− ∥µ∥22)

]
≥ E [λ2]E

[
1− ∥µ∥22

]
−
√
Var[λ2] Var [1− ∥µ∥22].

Since (1− ∥µ∥22) ∈ [0, 1], Var
[
1− ∥µ∥22

]
≤ 1/4. Moreover,

E
[
(λ2 − λ2)

2
]
= E

[
(λ2 − E[λ2] + E[λ2]− λ2)

2
]

= E
[
(λ2 − E[λ2])

2
]
+ E

[
(E[λ2]− λ2)

2
]
+ 2E

[
(λ2 − E[λ2])(E[λ2]− λ2)

]
= Var[λ2] + E

[
(E[λ2]− λ2)

2
]
,

which means

Var[λ2] ≤ E
[
(λ2 − λ2)

2
]
≤ 1

2
E[LG].

Hence,

Lunif ≤ −
1− e−4t

2
EL∼PL|G [λ2] (1− E

[
∥µ∥22

]
) +

1− e−4t

4

√
1

2
EL(1),L(2)∼PL|G

[LG]

We also have

E[λ2] = λ2 + E[λ2 − λ2]

≥ λ2 − E[|λ2 − λ2|]

≥ λ2 −
√
E
[
(λ2 − λ2)2

]
(by Cauchy-Schwarz)

≥ λ2 −
√

1

2
EL(1),L(2)∼PL|G

[LG],

which means

Lunif ≤ −
1− e−4t

2

(
λ2 −

√
1

2
E[LG]

)
(1− E

[
∥µ∥22

]
) +

1− e−4t

4

√
1

2
E[LG]

=
1− e−4t

2
√
2

(
3

2
− E

[
∥µ∥22

]) √
EL(1),L(2)∼PL|G

[LG]−
(1− e−4t)

2
λ2(1− E

[
∥µ∥22

]
).

C Ablation study on p

The ablation study results on different value of p is provided in Table 4.

D Ablation study on β

The ablation study results on different value of β is provided in Figure 4.
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Table 4: Accuracy (%) for several value of p. The results indicate that SpecMatch-CL’s performance
is highly sensitive to the choice of p.

Value of p NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B

p = 100 80.45±0.49 74.97±0.56 80.22±0.89 90.14±0.87 73.21±0.74 90.71±1.07 56.34±0.96 74.75±0.64
p = 80 81.86±0.36 76.69±0.50 81.12±1.04 90.87±0.75 74.26±0.94 91.31±0.79 57.22±1.20 73.35±0.44
p = 60 79.32±0.58 75.39±0.43 80.45±1.12 89.39±0.78 73.61±0.87 92.48±0.52 55.84±1.12 72.81±0.56
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Figure 4: Ablation study for β accross NCI1, PROTEINS and DD. As shown in the plot, β has a
significant effects on the performance of Specmatch-CL.

E More about experiment setting

Following GraphCL’s settings, we train with Adam optimizer a learning rate selected from {0.01,
0.001, 0.0001} via grid search; we use a batch size of 512 for most dataset except MUTAG (for
which we use the whole datasets as a batch); and we select the number of epochs from {20, 40, 60,
80, 100}. All experiments are run on a single NVIDIA A100 (80GB VRAM), and each experiments
take about 2-4 hours.

F Dataset statistics

Dataset statistics are provided in Table 5 and 6.

Table 5: Dataset statistics for unsupervised and semi-supervised experiments.
Datasets Category Graph Num. Avg. Node Avg. Degree
NCI1 Biochemical Molecules 4110 29.87 1.08
PROTEINS Biochemical Molecules 1113 39.06 1.86
DD Biochemical Molecules 1178 284.32 715.66
MUTAG Biochemical Molecules 188 17.93 19.79

COLLAB Social Networks 5000 74.49 32.99
RDT-B Social Networks 2000 429.63 1.15
RDB-M Social Networks 2000 429.63 497.75
IMDB-B Social Networks 1000 19.77 96.53
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Table 6: Dataset statistics for transfer learning.
Datasets Category Utilization Graph Num. Avg. Node Avg. Degree
ZINC 2M Biochemical Molecules Pre-Training 2,000,000 26.62 57.72
PPI-306K Protein–Protein Interaction Nets Pre-Training 306,925 39.82 729.62

BBBP Biochemical Molecules Finetuning 2,039 24.06 51.90
ToxCast Biochemical Molecules Finetuning 8,576 18.78 38.52
SIDER Biochemical Molecules Finetuning 1,427 33.64 70.71
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