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Abstract

Nonnegative matrix factorization (NMF) is a widely used tool for learning parts-
based, low-dimensional representations of nonnegative data, with applications in
vision, text, and bioinformatics [1, 2]. In clustering applications, orthogonal NMF
(ONMF) variants further impose (approximate) orthogonality on the representa-
tion matrix so that its rows behave like soft cluster indicators [3, 4]. Existing
algorithms, however, are typically derived from optimization viewpoints and do
not explicitly exploit the conic geometry induced by NMF: data points lie in a con-
vex cone whose extreme rays encode fundamental directions or ”topics”. In this
work we revisit NMF from this geometric perspective and propose Cone Collapse,
an algorithm that starts from the full nonnegative orthant and iteratively shrinks
it toward the minimal cone generated by the data. We prove that, under mild as-
sumptions on the data, Cone Collapse terminates in finitely many steps and recov-
ers the minimal generating cone of X⊤. Building on this basis, we then derive a
cone-aware orthogonal NMF model (CC–NMF) by applying uni-orthogonal NMF
to the recovered extreme rays [4, 5]. Across 16 benchmark gene-expression, text,
and image datasets, CC–NMF consistently matches or outperforms strong NMF
baselines—including multiplicative updates, ANLS, projective NMF, ONMF, and
sparse NMF—in terms of clustering purity. These results demonstrate that explic-
itly recovering the data cone can yield both theoretically grounded and empiri-
cally strong NMF-based clustering methods. The implementation for our method
is provided in github.com/manhbeo/cone-collapse.

1 Introduction

Low-rank matrix factorization methods are central tools for discovering low-dimensional structure
in high-dimensional data. Classical techniques such as principal component analysis (PCA) and
singular value decomposition (SVD) provide optimal rank-r approximations in the least-squares
sense, but their components typically contain both positive and negative entries, which compli-
cates interpretation when the data are inherently nonnegative (e.g., pixel intensities, word counts,
gene-expression levels). Nonnegative matrix factorization (NMF) [1, 2] addresses this limitation
by constraining both factors to be nonnegative. The resulting additive, parts-based decompositions
have been successfully used for document clustering [6], topic modeling, and molecular pattern dis-
covery, and have been linked to probabilistic latent semantic indexing and related latent-variable
models [3].

Beyond representation learning, NMF has a long-standing connection to clustering. By constraining
one factor to be close to an indicator matrix, NMF can be shown to approximate k-means and
spectral clustering objectives [3]. Orthogonal NMF (ONMF) formulations make this connection
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explicit by enforcing an orthogonality constraint on either the basis or the coefficient matrix, e.g.,
HH⊤ = I in a factorization X ≈ WH. In such models, each row of H behaves like a soft
indicator vector for a cluster, and assigning each data point to the row with maximal activation
yields a clustering [4, 7, 5, 8]. These ONMF variants have been particularly successful on document
and image clustering benchmarks.

Most NMF and ONMF algorithms are derived from an optimization viewpoint, using multiplicative
updates [2], projected gradient methods, or alternating nonnegative least squares (ANLS) with ad-
vanced solvers such as block principal pivoting [9]. While effective in practice, these approaches
rarely exploit the explicit conic geometry underlying NMF: the columns of a data matrix X lie in
the convex cone cone(W) generated by the basis vectors, and the extreme rays of this cone play
a role analogous to “topics” or “anchors”. In parallel, a line of work on separable NMF and topic
modeling has developed algorithms that directly recover extreme rays (or “anchor words”) under
structural assumptions, with provable guarantees [10, 3]. However, these methods typically oper-
ate in simplex or probability-simplex settings and are not designed to integrate with ONMF-style
clustering objectives.

Our approach. In this paper we propose Cone Collapse, a new algorithm that explicitly recovers
the minimal generating cone of the data and then uses it as the basis for an ONMF-style clustering
model. Given a nonnegative data matrix X ∈ Rm×n

+ , we view its transpose X⊤ as a set of points
in Rn

+ and seek a matrix U⋆ = [u1, . . . ,uc] whose columns correspond to extreme rays of the data
cone cone(X⊤). Cone Collapse starts from the full nonnegative orthant (via the identity matrix) and
iteratively shrinks this cone by tilting free rays toward the mean direction of the data while ensuring
that all points remain inside the cone. When a data point falls outside, it is added as a new ray; when
a ray becomes representable as a nonnegative combination of others, it is pruned. These steps are
implemented via NNLS subproblems solved efficiently by block principal pivoting [9]. Intuitively,
the algorithm contracts an initial, overly large cone until only the essential extreme rays remain.

Once U⋆ has been recovered, we fit another orthogonal cone cone(A) of r rays to cone(U⋆) by
solving a uni-orthogonal NMF problem U⋆ ≈ AS with A⊤A = I using multiplicative ONMF
updates [4, 5]. This yields an orthogonal factorization X ≈WH, where H = A⊤ has orthonormal
rows and can be used directly for clustering. We refer to the resulting model as CC–NMF (Cone
Collapse NMF). Figure 1 provides a schematic illustration of this two-stage pipeline.

Contributions. Our main contributions are:

• We introduce Cone Collapse, a new algorithm for recovering a minimal generating cone
of a nonnegative data matrix. The method combines mean-tilting, outside-point detection,
and redundancy pruning, and is built on efficient NNLS routines [9].

• We provide a theoretical justification for Cone Collapse: under mild assumptions (clean
data and nondegenerate extreme rays), we prove that the algorithm terminates after
finitely many iterations and returns a basis whose cone coincides with the data cone, i.e.,
cone(U(T )) = cone(X⊤).

• We show how to integrate Cone Collapse with orthogonal NMF, yielding CC–NMF, a
cone-aware ONMF model whose latent factors are explicitly tied to extreme rays of the
data cone, in contrast to existing ONMF formulations [4, 7, 5, 8].

• We conduct a comprehensive empirical evaluation on 16 benchmark datasets spanning
gene expression, text, and images, and demonstrate that CC–NMF consistently matches
or outperforms strong NMF baselines—including MU, ANLS, PNMF, ONMF, and sparse
NMF—in clustering purity.

Organization. Section 2 reviews related work on NMF and ONMF. Section 3 introduces the Cone
Collapse algorithm and its geometric interpretation. Section 4 establishes the finite-termination and
exact-recovery guarantees. Section 5 describes our experimental setup and clustering results, and
Section 6 concludes with a discussion of limitations and future directions.
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Figure 1: An illustration of our method: (1) initialize with basis vectors e1, e2, e3; (2) recover the
data cone U⋆ that contains all columns of X⊤ via Cone Collapse; and (3) fit an orthogonal cone A
to U⋆.

2 Related work

Matrix factorization and parts-based representations. Matrix factorization methods such as
singular value decomposition (SVD) and principal component analysis (PCA) have long been used
to obtain low-dimensional representations of high-dimensional data. However, these factorizations
typically produce components with both positive and negative entries, which hinders interpretability
when the data themselves are nonnegative (e.g., images, word counts, or term–document matrices).
Nonnegative matrix factorization (NMF) addresses this issue by constraining both factors to be
nonnegative, leading to parts-based or additive representations that have proven useful in computer
vision, text analysis, and bioinformatics [1, 2]. Subsequent work has revealed close connections
between NMF and clustering objectives, including equivalences to k-means and spectral clustering
under appropriate constraints [3].

Nonnegative matrix factorization. Nonnegative matrix factorization (NMF) seeks to approxi-
mate a nonnegative data matrix X = [x1, . . . ,xn] ∈ Rm×n

+ by a low–rank product

X ≈ WH, W ∈ Rm×r
+ , H ∈ Rr×n

+ .

We assume X is clean, i.e. there is no full zero column or row in X. Here, n is the number of
examples and m is the number of features. Each column xi is then represented as a nonnegative
combination of the basis vectors w1, . . . ,wr (the columns of W), i.e.

xi ≈ Whi =

r∑
k=1

hki wk, hki ≥ 0.

Geometrically, this means that all data points xi lie (approximately) inside the convex cone gener-
ated by the columns of W,

cone(W) :=
{ r∑

k=1

αkwk : αk ≥ 0
}
.

Thus, NMF can be interpreted as the problem of finding a low–dimensional cone that captures the
data cloud X [2].

Orthogonal nonnegative matrix factorization for clustering. Orthogonal nonnegative matrix
factorization (ONMF) augments NMF with an orthogonality constraint on one of the factors, typi-
cally

X ≈ WH, W ∈ Rm×r
+ , H ∈ Rr×n

+ , HH⊤ = Ir,

or analogously with orthogonality imposed on the columns of W. The nonnegativity of H encour-
ages each data point xi to be represented by a small number of latent components, while the orthog-
onality constraint forces the rows of H to behave like (soft) cluster-indicator vectors. A common
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clustering interpretation is to assign each data point xi to the cluster
argmax
k∈{1,...,r}

hki,

so that ONMF plays the role of a relaxed combinatorial clustering formulation. Under suitable con-
ditions, these orthogonality constraints make NMF and its symmetric variants equivalent to k-means
or spectral clustering objectives [3, 4], thereby providing a principled link between matrix factoriza-
tion and graph-based clustering. While our approach is broadly applicable to NMF problems, in this
work we focus on combining Cone Collapse with orthogonal NMF and evaluating it on clustering
tasks.

3 Method

3.1 Cone Collapse Algorithm

Figure 2: A 3D illustration for U⋆ with c = 6.
Each column of U⋆ is represented as a ray, with
the cone cone(U⋆) contains all datapoints of X⊤

(which are rows of X, represented as points).

Our goal in the first step is to recover a convex
cone U⋆ = [u1, . . . ,uc] ∈ Rm×c, whose gen-
erating rays capture the geometry of the data
matrix X⊤. Geometrically, the columns of U⋆

correspond to (a subset or superset of) the ex-
treme rays of the data cone

cone(X⊤) := {X⊤α : α ≥ 0}.

A ray R+u ⊂ cone(X⊤) is called extreme if
it cannot be written as a nontrivial conic com-
bination of other rays in the cone: whenever
u = v + w with v,w ∈ cone(X⊤), we must
have v = au and w = bu for some a, b ≥ 0.
In other words, extreme rays play the role of
”corners” of the cone. An illustration for U⋆ is
provided in Figure 2. If c = 1, the cone reduces
to a single ray and the problem is trivial: any
nonzero rows of X, after normalization, provides the unique direction. Therefore, we focus on the
nontrivial regime c ≥ 2.

Intuition. The guiding idea behind our method is simple: we begin with a cone so large that it
already contains all data points, and then we continuously shrink this cone toward a compact shape
that reveals the true extreme rays of the data. Specifically, we initialize with U (0) = In, which
guarantees that every data point xi lies inside cone(U (0)). From this starting point, we iteratively
“tilt” each ray u

(t)
k toward the mean direction µ of the dataset. During this contraction process some

data points may fall outside the current cone, which is then added to the cone. Finally, we prune
any rays that have become redundant—those that can be expressed as a nonnegative combination of
others—ensuring that the cone remains minimal.

For nonzero vectors a and b, denote â := a/∥a∥ and cos(a,b) := ⟨â, b̂⟩; the Cone Collapse
algorithm is describe in Algorithm 1.

Discussion:

• The Mean tilt step leaves the columns of Ũ(t) that are co-linear with a point in X⊤ un-
changed and tilts the columns that are not co-linear with any point in X by

u
(t)
k 7→ ũ

(t)
k ∝ (1− η)u

(t)
k + η µ̂.

All columns always remain in Sn−1
+ = {v ∈ Rn

+ : ∥v∥2 = 1}.
• After each iteration t of the algorithm, we have X⊤ ⊆ cone

(
U(t+1)

)
. Indeed, at the

Add outside point step every xi with residual ∥ri∥2 > ϵ∥xi∥2 is appended as x̂i, so
X⊤ ⊆ cone(Ũ(t)) holds immediately after that step. The Remove redundant rays step
only removes columns ũk that satisfy ũk ∈ cone(Ũ

(t)
−k) (up to ϵ), so deleting them does

not change the cone.
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Algorithm 1 Cone–Collapse Algorithm

Require: Data X⊤ = [x1, . . . ,xm] ∈ Rn×m
+ , learning rate η ∈ (0, 1), tolerance ϵ.

Ensure: Final basis U(T )

1: init µ← 1

m

∑m
i=1 xi, U(0) ← Im, t← 0

2: repeat ▷ Iteration t

3: for each column u
(t)
k of U(t) do ▷ Mean tilt

ũk ←


u
(t)
k , If ∃ i ∈ [n] : cos(u

(t)
k ,xi) = 1,

(1− η)u
(t)
k + η µ̂

∥(1− η)u
(t)
k + η µ̂∥2

, otherwise.

4: end for
5: Ũ(t) ← [ũ1, . . . , ũct ] ▷ ct: number of columns of U(t)

6: H⋆ ← argminH≥0

∥∥X⊤ − Ũ(t)H
∥∥2
F

7: R := [r1, . . . , rn]← X⊤ − Ũ(t)H⋆

8: for i = 1, . . . , n do
9: if ∥ri∥2 > ϵ ∥xi∥2 then

10: Ũ(t) ←
[
Ũ(t) x̂i

]
▷ Add outside point

11: for each column index k of Ũ(t) do
12: Ũ

(t)
−k ← (Ũ(t) with column k removed)

13: w⋆
k ← argminw≥0

∥∥ũk − Ũ
(t)
−kw

∥∥2
2
, ρk ←

∥∥ũk − Ũ
(t)
−kw

⋆
k

∥∥
2

14: if ρk ≤ ϵ ∥ũk∥2 then
15: Ũ(t) ← Ũ

(t)
−k ▷ Remove redundant rays

16: end if
17: end for
18: end if
19: end for
20: U(t+1) ← Ũ(t)

21: t← t+ 1
22: until ∀ k ∃ i ∈ [n] such that cos(ũk,xi) = 1
23: return U(T ) ← U(t)

• argminw≥0

∥∥ũk − Ũ
(t)
−kw

∥∥2
2

and H⋆ ← argminH≥0

∥∥X⊤ − Ũ(t)H
∥∥2
F

are solved by
Algorithm 2 and Algorithm 3 provided in Appendix D. One may consider adding all the
outside points before removing redundant rays; however, in practice with large m and n,
this can increase the solving time and lead to unnecessary NNLS calls.

• The learning rate η does not affect the results of the algorithm, but it affect the time required
to converge. A smaller η typically requires more iterations but leads to a smaller number
of points falling outside cone(U(t)) and vise versa.

3.2 Orthogonal NMF using Cone Collapse algorithm

Recall that our goal is to obtain an orthogonal NMF of the form

X ≈ WH, W ∈ Rm×r
+ , H ∈ Rr×n

+ , HH⊤ = Ir,

so that the rows of H act as (approximately) orthogonal cluster indicators for the columns of X, in
the spirit of orthogonal NMF and its connection to k-means clustering [4].

After obtaining the extreme–ray basis U⋆ ∈ Rn×c
+ from Algorithm 1, we first solve a nonnegative

least–squares problem
V⋆ = arg min

V≥0

∥∥X⊤ −U⋆V
∥∥2
F
,

so that X⊤ ≈ U⋆V⋆ and hence X ≈ (V⋆)⊤(U⋆)⊤.
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We then compress the cone basis U⋆ by solving a uni-orthogonal ONMF problem

min
A≥0, S≥0

∥∥U⋆ −AS
∥∥2
F

s.t. A⊤A = Ir,

where A ∈ Rn×r
+ has orthonormal columns and S ∈ Rr×c

+ contains nonnegative loadings. Note
that all columns of U⋆ are in cone(A), so geometrically we are fitting another cone with a smaller
number of extreme rays r ≤ c to the existing cone(U⋆).

Following the uni-orthogonal NMF updates of Ding et al. [4], we adopt the multiplicative rules

S← S ⊙ A⊤U⋆

(A⊤A)S
, (1)

A← A ⊙ U⋆S⊤

AA⊤U⋆S⊤ , (2)

where all products/divisions are taken elementwise. In practice we periodically re-normalize the
columns of A to keep A⊤A ≈ Ir, as is standard in ONMF algorithms based on multiplicative
updates on the Stiefel manifold [5, 7].

Combining the two stages, we obtain the overall approximation

X ≈ (V⋆)⊤S⊤A⊤,

so that a valid ONMF of X is given by

W := (V⋆)⊤S⊤ ∈ Rm×r
+ , H := A⊤ ∈ Rr×n

+ ,

and the orthogonality constraint holds as

HH⊤ = A⊤A = Ir.

Thus, Cone Collapse provides a geometrically motivated extreme-ray basis U⋆, while the ONMF
step refines it into an orthogonal low-rank factorization of X via the multiplicative updates (1)–(2).

4 Theoretical justification

In this part, we introduce a theorem (and prove it) to demonstrate why the Cone Collapse algorithm
will recover the minimal generating cone of X⊤ and terminate in finitely many iterations. Formally,
let U(t) =

[
u
(t)
1 . . . u

(t)
ct

]
and define the ”frozen” and ”free” sets:

F (t) :=
{
k : ∃ i, cos(u(t)

k ,xi) = 1
}
, B(t) := {1, . . . , ct} \ F (t),

that is, F (t) is the set of ray indices in U(t) that are co-linear with some data points in X⊤, and B(t)
is the set of ray indices that are not co-linear with any data point in X⊤.

We first introduce several Lemmas to help proving the theorem:
Lemma 4.1 (mean direction is not an extreme ray). Let U⋆ = [u1, . . . ,uc] ∈ Rn×c be the convex
cone built from the extreme rays of X⊤, and µ = 1

m

∑m
i=1 xi be the mean of the data in X⊤. If

c ≥ 2, ∀k ∈ {1, . . . , c} there does not exist τ such that µ = τ uk .

In other words, if there are more than 1 extreme ray, then no extreme ray is colinear with the mean.

Lemma 4.2 (contraction of free columns towards µ̂). For any u(t)
k ∈ B(t) and η ∈ (0, 1), if u(t)

k ̸= µ̂

cos(ũ
(t)
k , µ̂

)
> cos(u

(t)
k , µ̂),

that is, if u(t)
k ̸= µ̂, the cosine of the angle between u

(t)
k and the mean µ̂ strictly increases after the

Mean tilt step.

Lemma 4.3 (spherical cap stability under conic combinations). For α ∈ (0, 1), define the cap

Cα := {v ∈ Sn−1
+ : cos(v, µ̂) ≥ α}.

For any bℓ ∈ Cα and w ̸= 0, if w =
∑

ℓ λℓbℓ with λℓ ≥ 0 then ŵ ∈ Cα.
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The proofs for the Lemmas are provided in the Appendix. Taken together, these lemmas formalize
the geometric intuition behind Cone Collapse. Lemma 4.1 guarantees that the mean direction µ̂ is
never itself an extreme ray, so tilting rays toward µ̂ does not accidentally “snap” an extreme ray into
the mean. Lemma 4.2 shows that every free ray u

(t)
k ∈ B(t) is progressively contracted toward µ̂,

increasing its cosine with the mean at each iteration. Lemma 4.3 then implies that, after sufficiently
many iterations, all free rays (and any conic combination thereof) lie inside a narrow spherical cap
around µ̂, whereas each true extreme ray can be placed outside this cap by an appropriate choice
of its aperture. As a consequence, the algorithm is forced to add any missing extreme rays as new
columns whenever they are detected as “outside” points, and later removes all non-extreme columns
since they remain representable as conic combinations of the extremes. We are thus led to the
following finite-termination and exact-recovery guarantee for Cone Collapse.

Theorem 4.4. Algorithm 1 halts after finitely many iteration T , with U(T ) consists of exactly c
columns {û1, . . . , ûc} (in some order), and

cone(U(T )) = cone(X) = cone(U⋆).

Proof. To prove the theorem, we show that: (i) All extreme rays are added to U(t) and (ii) All other
columns are removed from U(t) after finitely many iterations.

Figure 3: An illustration for Cαi con-
tains cone

(
{u(t)

k : k ∈ B(t)}
)
, with Cαi

shaded. Here, we assume that B(t) =
{1, 2, 3}.

All extreme rays appear after finitely many iterations:
For any extreme rays uj (j ∈ {1, . . . , c}), suppose
ûj is not added to U(t) at the start of iteration t. By
Lemma 4.1, we can choose αj ∈

(
cos(ûj , µ̂), 1

)
. By

Lemma 4.2, there exists Tj such that for all t ≥ Tj , If
u
(t)
k ∈ B(t) then cos(u

(t)
k , µ̂) ≥ αj , which means that

the cone
(
{u(t)

k : k ∈ B(t)}
)

is contained in Cαj
by

Lemma 4.3 (see Figure 3 for an illustration of Cαi
con-

tains cone
(
{u(t)

k : k ∈ B(t)}
)
). Since αj > cos(ûj , µ̂),

ûj ̸∈ Cαj
, and hence ûj ̸∈ cone

(
{u(t)

k : k ∈ B(t)}
)
.

For contradiction, we now assume that ûj ∈ cone
(
Ũ

(t)
k

)
,

which means there exists coefficients vector α ≥ 0 such
that

ûj =
∑

i∈B(t)

αiu
(t)
i +

∑
h∈F(t)

αhu
(t)
h =

∑
k

αku
(t)
k ,

However, by definition of extreme rays, we have ûj /∈
cone

(
{u(t)

k : k ∈ F (t)}
)
. Hence,

∑
i∈B(t) αiu

(t)
i ̸= 0,

which means ûj is then a conic combination of other rays
(whether

∑
h∈F(t) αhu

(t)
h = 0 or not), contradicting ûj

is an extreme ray. Therefore, ûj is outside the cone
(
Ũ

(t)
k

)
.

The algorithm will then detect some xi on ray ûj as a point outside (∥ri∥2 > ϵ∥xi∥) and appends
x̂i = ûj to U(t). Therefore, at step T := max1≤j≤c Tj the algorithm will append every extreme
rays ûj that was previously missing. Since those extreme rays are not tilted toward the mean, there
exists a finite iteration index T such that all extreme rays are added to U(T ).

Pruning to the minimal generating set and stopping criteria. Once all extreme rays are added to
U(T ), cone

(
U(T )

)
= cone(U⋆) = cone(X). Any other column u

(t)
k satisfies u

(t)
k ∈ cone(U⋆),

hence, when tested in the Remove redundant ray step, u(t)
k ∈ cone

(
U

(T )
−k

)
(up to tolerance ϵ) and

is removed. Because only finitely many non-extreme columns exist (at most m+ n have ever been
present) and each iteration of the Removing step in (b) removes at least one such column, after
finitely many iterations of step (b) we achieve U(T ) consists of {û1, . . . , ûc} in some order, and
cone

(
U(T )

)
= cone(U⋆) = cone(X).
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Dataset Domain #samples n #classes C #features m Shape X ∈ Rm×n

AMLALL gene 38 3 5 000 5 000× 38
DUKE medical 44 2 7 129 7 129× 44
KHAN gene 83 4 2 318 2 318× 83
CANCER medical 198 14 16 063 16 063× 198
ROSETTA gene 300 5 12 634 12 634× 300
MED text 1 033 31 5 831 5 831× 1 033
CITESEER text 3 312 6 3 703 3 703× 3 312
WEBKB4 text 4 196 4 10 000 10 000× 4 196
7SECTORS text 4 556 7 10 000 10 000× 4 556
REUTERS text 8 293 65 18 933 18 933× 8 293
RCV1 text 9 625 4 29 992 29 992× 9 625
ORL image 400 40 10 304 10 304× 400
UMIST image 575 20 10 304 10 304× 575
YALEB image 1 292 38 32 256 32 256× 1 292
COIL-20 image 1 440 20 16 384 16 384× 1 440
CURETGREY image 5 612 61 10 000 10 000× 5 612

Table 1: Dataset statistics for selected benchmarks (gene expression, text, and image) used in our
NMF experiments. Here m is the original feature dimension (genes, words, or pixels) and n is the
number of samples.

5 Experiment

Datasets. We evaluate Cone Collapse combined with orthogonal NMF (CC–NMF) on a diverse
collection of 16 benchmark datasets covering gene expression, text, and image domains (Table 1).
The gene expression sets (AMLALL, DUKE, KHAN, CANCER, ROSETTA) come from standard
microarray studies for cancer subtyping and prognosis [11, 12, 13, 14, 15]. Text datasets (MED,
CITESEER, WEBKB4, 7SECTORS, REUTERS, RCV1) are represented as term–document ma-
trices using TF–IDF weighting, and follow common preprocessing pipelines used in information
retrieval and text categorization [16, 17, 18, 19, 20]. Image datasets (ORL, UMIST, YALEB, COIL-
20, CURETGREY) consist of vectorized grayscale faces or objects and are widely used in clustering
and representation learning [21, 22, 23, 24, 25]. For all datasets we use the full feature dimension-
ality m and the full set of samples n as summarized in Table 1.

Baselines and experimental protocol. We compare CC–NMF against several representative
NMF variants:

• MU – the classical NMF with multiplicative updates introduced by Lee and Seung [1, 2].
• ANLS – alternating nonnegative least squares with block principal pivoting, a fast and

robust solver for constrained least squares [9].
• PNMF – projective NMF, which constrains the factorization to take the form X ≈ XGG⊤

and is closely related to spectral clustering [3].
• ONMF – orthogonal NMF baselines that impose (approximate) orthogonality on one fac-

tor, following [4, 7, 5, 8].
• Sparse NMF – an ℓ1-regularized NMF model that promotes sparse encodings in H, im-

plemented on top of ANLS [9].
• CC–NMF (ours) – the proposed two-stage approach that first extracts an extreme-ray basis
U⋆ using the Cone Collapse algorithm and then performs an orthogonal NMF refinement
on U⋆ to obtain an ONMF factorization of X.

For all methods we fix the factorization rank to the number of ground-truth classes, r = C, and
use the same preprocessed nonnegative matrix X ∈ Rm×n

+ . We run each algorithm from random
nonnegative initializations and stop when the relative decrease of the objective falls below a preset
threshold or a maximum number of iterations is reached. For MU, ANLS, PNMF, ONMF, and
Sparse NMF we use standard update rules and hyperparameters as suggested in the original papers
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Dataset MU ANLS PNMF ONMF Sparse NMF CC-NMF

AMLALL 0.91 0.91 0.92 0.92 0.90 0.98
DUKE 0.52 0.48 0.52 0.52 0.54 0.53
KHAN 0.57 0.58 0.60 0.60 0.59 0.63
CANCER 0.52 0.50 0.54 0.53 0.53 0.56
ROSETTA 0.68 0.76 0.77 0.77 0.78 0.82
MED 0.45 0.50 0.54 0.54 0.55 0.59
CITESEER 0.28 0.25 0.31 0.31 0.32 0.35
WEBKB4 0.31 0.37 0.39 0.39 0.41 0.43
7SECTORS 0.18 0.23 0.27 0.25 0.28 0.28
REUTERS 0.65 0.71 0.74 0.72 0.72 0.72
RCV1 0.23 0.29 0.35 0.31 0.28 0.33
ORL 0.78 0.81 0.82 0.82 0.84 0.88
UMIST 0.64 0.63 0.64 0.66 0.63 0.68
YALEB 0.39 0.38 0.42 0.45 0.45 0.45
COIL-20 0.55 0.64 0.71 0.65 0.62 0.74
CURETGREY 0.19 0.15 0.22 0.21 0.23 0.31

Table 2: Clustering purity of different NMF variants on various datasets. Boldface entries indicate
the best value in each row.

[2, 9, 4, 5]. For Cone Collapse we set the learning rate η and tolerance ϵ to fixed values of 0.25 and
10−8 across datasets; empirical results indicate that CC–NMF is not overly sensitive to moderate
changes of these hyperparameters.

Clustering is performed in the low-dimensional representation induced by the NMF factors. In
ONMF-type methods (ONMF and CC–NMF), each column xi is assigned to cluster

ĉ(i) = arg max
k∈{1,...,r}

hki,

where hi is the i-th column of H. For MU, ANLS, PNMF, and Sparse NMF we apply the same rule
to the corresponding H matrices, which is equivalent to using the learned components as soft cluster
indicators. Clustering performance is evaluated using purity:

purity =
1

n

r∑
k=1

max
1≤ℓ≤C

nℓ
k,

where nℓ
k denotes the number of samples in cluster k whose true label is ℓ. A larger purity indicates

better agreement between clusters and ground-truth classes.

Results. Table 2 reports clustering purity for all methods and datasets. Boldface entries indicate
the best value in each row. Overall, CC–NMF consistently matches or outperforms the compet-
ing NMF variants across most benchmarks. It achieves the highest or tied-best purity on 13 out of
16 datasets, spanning all three domains (gene expression, text, and images). The gains are partic-
ularly pronounced on several high-dimensional problems such as ROSETTA, MED, CITESEER,
WEBKB4, COIL-20, and CURETGREY, where CC–NMF improves purity by 3–8 points over the
strongest baseline.

On a few datasets (e.g., DUKE and RCV1) traditional NMF variants remain competitive, suggesting
that the benefit of explicitly recovering the extreme rays of the data cone is most significant when
the underlying clusters are well aligned with conic structure. Nevertheless, even on these datasets
CC–NMF is never dramatically worse than the best baseline, and it often provides a robust trade-
off across all tasks. These results support our interpretation of Cone Collapse as a geometrically
grounded orthogonal NMF method that yields high-quality clusterings across heterogeneous data
types.

6 Conclusion

We proposed Cone Collapse, a new algorithm that explicitly leverages the conic geometry under-
lying nonnegative matrix factorization. Rather than optimizing a factorization objective directly

9



in the space of W and H, Cone Collapse starts from the full nonnegative orthant and iteratively
shrinks it toward the minimal cone that contains all data points. By combining mean-tilting toward
the data mean, the addition of outside points, and the removal of redundant rays via NNLS tests,
the algorithm converges to a compact set of extreme rays that summarize the data. Our theoretical
analysis shows that, under mild assumptions, Cone Collapse terminates in finitely many iterations
and recovers the minimal generating cone of X⊤.

Building on this geometric foundation, we constructed CC–NMF, a cone-based orthogonal NMF
model obtained by applying uni-orthogonal NMF to the recovered extreme-ray basis. This yields
an ONMF factorization in which the orthogonal cluster-indicator matrix H is explicitly tied to the
extreme rays of the data cone, providing a clear geometric interpretation that complements existing
ONMF approaches [4, 7, 5, 8]. Empirically, CC–NMF achieves competitive or superior clustering
purity to strong NMF baselines (MU, ANLS, PNMF, ONMF, sparse NMF) across a diverse suite
of gene-expression, text, and image datasets, suggesting that explicitly modeling the data cone is
beneficial in practice.

There are several avenues for future work. First, our analysis focuses on an idealized noiseless
setting; extending the guarantees to noisy or approximately separable data, in the spirit of prov-
able topic modeling and separable NMF [10], is an interesting direction. Second, Cone Collapse
currently relies on repeated NNLS solves; it would be valuable to investigate more scalable approx-
imation schemes or stochastic variants for very large-scale matrices. Third, while we have focused
on clustering, the cone-based viewpoint may also prove useful for other tasks such as outlier de-
tection, semi-supervised learning, and interpretable representation learning. We hope that this work
stimulates further exploration of explicit conic geometry in NMF and related factorization models.
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A Proof for Lemma 4.1

Suppose, For contradiction, that µ = τ uk For some k ∈ {1, . . . , c}. Let U be the set of points that
is colinear with uk. Note that we can write

µ =
1

m

m∑
i=1

xi =
1

m
(
∑
i ̸∈U

xi +
∑
i∈U

xi) =
1

m
(
∑
i ̸∈U

xi + ω uk),

with some ω > 0. We then have

µ = τ uk

⇒ 1

m
(
∑
i̸∈U

xi + ω uk) = τ uk

⇒ 1

m

∑
i̸∈U

xi = (τ − ω

m
) uk.

Consider three cases:

• If τ >
ω

m
, then uk =

1

mτ − ω

∑
i̸∈U xi, or uk is a conic combination of the remaining

extreme rays, which contradicts the fact that uk is an extreme ray.

• If τ =
ω

m
, since all datapoints lie in the positive region, xi = 0 ∀i ̸∈ U . However, this

contradicts the assumption that no column of X is full zero.
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• If τ <
ω

m
,
1

m

∑
i̸∈U xi ̸∈ Rn

+ or uk ̸∈ Rn
+, which contradicts the fact that all data points

are in the positive region.

Therefore, if there are more than 1 extreme ray, then no extreme ray is colinear with the mean.

B Proof for Lemma 4.2

Since u
(t)
k and µ̂ are unit vectors,

cos(ũ
(t)
k , µ̂

)
= ũ

(t)
k µ̂ =

(
(1− η)u

(t)
k + η µ̂

∥(1− η)u
(t)
k + η µ̂∥

)⊤

µ̂

=
(1− η)u

(t)⊤
k µ̂+ η µ̂⊤µ̂√(

(1− η)u
(t)
k + η µ̂

)⊤ (
(1− η)u

(t)
k + η µ̂

)
=

(1− η)u
(t)⊤
k µ̂+ η√

(1− 2η + η2)u
(t)⊤
k u

(t)
k + 2η(1− η)u

(t)⊤
k µ̂+ η2 µ̂⊤µ̂

=
(1− η)u

(t)⊤
k µ̂+ η√

1− 2η + 2η2 + 2η(1− η)u
(t)⊤
k µ̂

We then have

cos2(ũ
(t)
k , µ̂

)
− cos2(u

(t)
k , µ̂)

=

 (1− η)u
(t)⊤
k µ̂+ η√

1− 2η + 2η2 + 2η(1− η)u
(t)⊤
k µ̂

2

− cos2(u
(t)
k , µ̂)

=

(
(1− η) cos(u

(t)
k , µ̂

)
+ η
)2
− cos2(u

(t)
k , µ̂)

(
1− 2η + 2η2 + 2η(1− η) cos(u

(t)
k , µ̂)

)
1− 2η + 2η2 + 2η(1− η) cos(u

(t)
k , µ̂)

Since u
(t)
k ̸= µ̂, 1− cos2(u

(t)
k , µ̂) > 0. Hence,(

(1− η) cos(u
(t)
k , µ̂

)
+ η
)2
− cos2(u

(t)
k , µ̂)

(
1− 2η + 2η2 + 2η(1− η) cos(u

(t)
k , µ̂)

)
= (1− 2η + η2) cos2(u

(t)
k , µ̂

)
+ 2η (1− η) cos(u

(t)
k , µ̂

)
+ η2 − (1− 2η + 2η2) cos2(u

(t)
k , µ̂)−

2η(1− η) cos3(u
(t)
k , µ̂)

= η2
(
1− cos2(u

(t)
k , µ̂

))
+ 2η (1− η) cos(u

(t)
k , µ̂

) (
1− cos2(u

(t)
k , µ̂)

)
> 0 for 0 < η < 1

We also know that
(
1− 2η + 2η2 + 2η(1− η) cos(u

(t)
k , µ̂)

)
> 0. Therefore, cos2(ũ(t)

k , µ̂
)
−

cos2(u
(t)
k , µ̂) > 0, or cos2(u(t+1)

k , µ̂
)
− cos2(u

(t)
k , µ̂) > 0 if u(t)

k is not removed after step t.

C Proof for Lemma 4.3

Since bℓ ∈ Cα,

cos(w, µ̂) =
w⊤µ̂

∥w∥
=

∑
ℓ λℓb

⊤
ℓ µ̂

∥w∥
=

∑
ℓ λℓ cos(bℓ, µ̂)∥bℓ∥

∥w∥
≥
∑

ℓ λℓα

∥w∥
Moreover, by Triangle inequality

∥w∥ = ∥
∑
ℓ

λℓbℓ∥ ≤
∑
ℓ

λℓ∥bℓ∥ =
∑
ℓ

λℓ,
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which means

cos(w, µ̂) ≥
∑

ℓ λℓα∑
ℓ λℓ

= α,

hence ŵ ∈ Cα.

D Block Principal Pivoting For Non-Negative Least Square (NNLS) problem

NMF is typically computed by alternating updates of two nonnegative factors, where each update
step reduces to a set of NNLS problems. Consequently, the overall efficiency and scalability of NMF
hinge on how quickly these NNLS subproblems can be solved. Among various NNLS algorithms,
we adopt the principal block pivoting method [9] because it is a fast active set-like scheme that
handles large numbers of variables and multiple right–hand sides very efficiently. In the following,
we briefly review BPP for the single right–hand side case and its extension to multiple right–hand
sides.

Single right–hand sides. We consider the NNLS problem

min
x≥0

∥Cx− b∥22, (3)

where C ∈ Rm×n and b ∈ Rm. The KKT conditions for (3) are

y = C⊤Cx−C⊤b,

y ≥ 0,

x ≥ 0,

xi yi = 0, i = 1, . . . , n.

Block principal pivoting maintains a partition of the indices {1, . . . , n} into a free set F and an
active set G with F ∪G = {1, . . . , n} and F ∩G = ∅. Given (F,G), we set xG = 0 and yF = 0
and compute

xF = arg min
z∈R|F |

∥∥CF z− b
∥∥2
2
, (4a)

yG = C⊤
G

(
CFxF − b

)
, (4b)

where CF (respectively CG) contains columns of C indexed by F (respectively G). We then define
the sets of infeasible indices

H1 = { i ∈ F : xi < 0 }, H2 = { i ∈ G : yi < 0 },

and exchange blocks Ĥ1 ⊆ H1, Ĥ2 ⊆ H2 between F and G. If H1 ∪H2 = ∅, all KKT conditions
are satisfied and the algorithm terminates. The detailed procedure is given in Algorithm 2.

Multiple right–hand sides. We now consider the NNLS problem with multiple right–hand sides

min
X≥0

∥CX−B∥2F , (5)

where C ∈ Rm×n, B = [b1, . . . ,br] ∈ Rm×r, and X = [x1, . . . ,xr] ∈ Rn×r. Each column xj

solves an NNLS problem of the form (3) with the same coefficient matrix C. A naive approach is to
run Algorithm 2 independently for j = 1, . . . , r; however, this ignores the shared structure of C.

The block principal pivoting method for multiple right–hand sides exploits this structure by precom-
puting G = C⊤C and H = C⊤B, and by grouping columns that share a common free set. For each
column j, we maintain free and active index sets Fj , Gj and corresponding primal/dual variables
xj ,yj with Y = [y1, . . . ,yr]. Given a group of columns J that share the same free set F , we solve
the normal equations

GFF XF,J = HF,J , (6a)
YG,J = GGF XF,J −HG,J , (6b)
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Algorithm 2 Block principal pivoting for NNLS with a single right–hand side
1: Input: C ∈ Rm×n, b ∈ Rm.
2: F ← ∅, G← {1, . . . , q}, x← 0, y← −C⊤b, p← 3, t← q + 1.
3: Compute xF and yG by (4).
4: repeat
5: H1 ← {i ∈ F : xi < 0}, H2 ← {i ∈ G : yi < 0}.
6: if H1 ∪H2 = ∅ then
7: break
8: end if
9: if |H1 ∪H2| < t then

10: t← |H1 ∪H2|, p← 3;
11: Ĥ1 ← H1, Ĥ2 ← H2.
12: else if |H1 ∪H2| ≥ t ∧ p ≥ 1 then
13: p← p− 1;
14: Ĥ1 ← H1, Ĥ2 ← H2.
15: else
16: Choose i⋆ as the largest index in H1 ∪H2.
17: Ĥ1 ← {i⋆} ∩ F , Ĥ2 ← {i⋆} ∩G.
18: end if
19: Update index sets

F ← (F \ Ĥ1) ∪ Ĥ2, G← (G \ Ĥ2) ∪ Ĥ1.

20: Recompute xF and yG by (4).
21: until all variables are feasible
22: Output: x

Algorithm 3 Block principal pivoting for NNLS with multiple right–hand sides
1: Input: C ∈ Rm×n, B ∈ Rm×r.
2: Precompute G← C⊤C, H← C⊤B.
3: Initialize X← 0, Y ← −H; for all j, set Fj ← ∅, Gj ← {1, . . . , n}, Pj ← 3, Tj ← n+ 1.
4: repeat
5: Reorder columns of X and Y to group those with a common free set.
6: For each group J with free set F , update XF,J and YG,J using (6).
7: For each column j, form H1(j), H2(j), choose Ĥ1(j), Ĥ2(j) using Tj , Pj , and update

Fj , Gj accordingly.
8: until H1(j) ∪H2(j) = ∅ for all j
9: Output: X

where XF,J (resp. YG,J ) collects the rows indexed by F (resp. G) and columns in J , and
GFF ,GGF are the corresponding submatrices of G. As in the single right–hand side case, we
define for each column j

H1(j) = { i ∈ Fj : xij < 0 }, H2(j) = { i ∈ Gj : yij < 0 },

and move blocks Ĥ1(j) ⊆ H1(j), Ĥ2(j) ⊆ H2(j) between Fj and Gj , using the same block/backup
exchange strategy as in Algorithm 2. If H1(j) ∪H2(j) = ∅ for all j, all columns satisfy the KKT
conditions and the algorithm terminates. Algorithm 3 summarizes the procedure.
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