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Abstract

Contrastive learning has emerged as a powerful method in deep learning, ex-
celling at learning effective representations through contrasting samples from
different distributions. However, dimensional collapse, where embeddings con-
verge into a lower-dimensional space, poses a significant challenge, especially
in semi-supervised and self-supervised setups. In this paper, we first identify a
critical learning-rate threshold, beyond which standard contrastive losses converge
to collapsed solutions. Building on these insights, we propose CLOP, a novel semi-
supervised loss function designed to prevent dimensional collapse by promoting
the formation of orthogonal linear subspaces among class embeddings. Through
extensive experiments on real and synthetic datasets, we demonstrate that CLOP
improves performance in image classification and object detection tasks while also
exhibiting greater stability across different learning rates and batch sizes.

1 Introduction

Recent advancements in deep learning have positioned Contrastive Learning as a leading paradigm,
largely due to its effectiveness in learning representations by contrasting samples from different
distributions while aligning those from the same distribution. Prominent models in this domain
include SimCLR [4], Contrastive Multiview Coding (CMC) [40], VICReg [ 1], BarLowTwins [S6],
among others [16} [28] 46]. These models share a common two-stage framework: representation
learning and fine-tuning. In the first stage, representation learning is performed in a self-supervised
manner, where the model is trained to map inputs to embeddings using contrastive loss to separate
samples from different labels. In the second stage, fine-tuning occurs under a supervised setup, where
labeled data is used to classify embeddings correctly. For practical applicability, a small amount
of labeled data is required in the fine-tuning stage to produce meaningful classifications, making
the overall pipeline semi-supervised. Empirical evidence demonstrates that these models, even
with limited labeled data (as low as 10%), can achieve performance comparable to fully-supervised
approaches on moderate to large datasets [20].

Despite the effectiveness of contrastive learning on largely unlabeled datasets, a common issue
encountered during the training process is dimensional collapse. As pointed out by [11} 13} 114, 21}
35,139, 1511, this phenomenon describes the collapse of output embeddings from the neural network
into a lower-dimensional space, reducing their spatial utility and leading to indistinguishable classes.
There are two main approaches to resolve this issue: augmentation modification [[L1} 21} |39} I51]]
and loss modification [[11} (14, 35]]. In this paper, we propose a semi-supervised loss function CLOP
to address the issue of collapse. To address dimensional collapse, our approach selects prototypes
similarly to [13}160]. The key distinction is that our method aims to push the embeddings toward
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distinct orthogonal linear subspaces, allowing them to occupy a higher-rank space. We demonstrate
through experiments that CLOP is more effective for image classification and object detection tasks.

The main contributions of this paper can be viewed from two perspectives. First, we identify and
analyze the detrimental effects of inappropriate learning rates on contrastive learning losses that
rely exclusively on cosine similarity. Specifically, we show that when embeddings collapse into a
rank-1 subspace, the optimizer converges to an uninformative stationary point. Through a gradient-
descent analysis, we establish the existence of a critical learning-rate range outside of which training
inevitably converges to this undesirable point. Building upon these insights, we propose a novel
contrastive loss term, termed CLOP, designed to encourage embeddings of partial training datasets to
cluster around a set of orthonormal prototypes. This loss term is applicable to both semi-supervised
and fully-supervised contrastive learning scenarios, particularly when only a subset of the training
data is labeled. We validate CLOP’s effectiveness through extensive experiments on embedding
visualization, image classification, and object detection tasks, using both balanced and imbalanced
datasets. Our empirical results demonstrate that CLOP consistently outperforms baseline methods,
exhibiting remarkable robustness and stability across a wide range of learning rates and reduced batch
sizes.

Paper Organization In Section 2} we provide essential background information and discuss recent
advancements in both self-supervised and supervised contrastive learning, as well as analyzing
the dimensional collapse phenomenon associated with contrastive learning methods. Section [3]
elaborates on the motivation behind our approach through simulations and detailed gradient analysis.
Subsequently, in Section[d we introduce our proposed model, CLOP. Finally, Section [5| presents
extensive experimental evaluations conducted on image datasets.

2 Related Work

Contrastive learning has gained prominence in deep learning for its ability to learn meaningful
representations by pulling together similar (positive) pairs and pushing apart dissimilar (negative)
pairs in the embedding space. Positive pairs are generated through techniques like data augmentation,
while negative pairs come from unrelated samples, making contrastive learning particularly effective
in self-supervised tasks like image classification. Pioneering models such as SimCLR [4], CMC [40],
VICReg [1]], and Barlow Twins [56] share the objective of minimizing distances between augmented
versions of the same input (positive pairs) and maximizing distances between unrelated inputs
(negative pairs). SimCLR maximizes agreement between augmentations using contrastive loss, while
CMC extends this to multi-view learning [4}40]. VICReg introduces variance-invariance-covariance
regularization without relying on negative samples [ 1], and Barlow Twins reduce redundancy between
different augmentations [56].

Recent innovations have improved contrastive learning across various domains. For instance, methods
like structure-preserving quality enhancement in CBCT images [22] and false negative cancellation
[L8] have enhanced image quality and classification accuracy. In video representation, cross-video
cycle-consistency and inter-intra contrastive frameworks [45) [38]] have shown significant gains.
Additionally, contrastive learning has advanced sentiment analysis [50]], recommendation systems
[52]], and molecular learning with faulty negative mitigation [44]. [48]] introduces GraphACL, a
novel framework for contrastive learning on graphs that captures both homophilic and heterophilic
structures without relying on augmentations.

2.1 Contrastive Loss

In unsupervised learning, [46] introduced InfoNCE, a loss function defined as:

exp(z; z;(;)/T)
Lintoxce = — »_ log 0/

1
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where z; is the embedding of sample 4, j(4) its positive pair, and 7 controls the temperature.

Recent refinements focus on (1) component modifications, (2) similarity adjustments, and (3) novel
approaches. [28]] use EM with k-means to update centroids and reduce mutual information loss, while
[43] add L2 distance to InfoNCE, though both underperform state-of-the-art (SOTA) techniques. [49]
reduce noise with augmentations, and [55]] improve gradient efficiency with Decoupled Contrastive



Learning, though neither surpasses SOTA. In similarity adjustments, [5] propose a debiased loss, and
[12] use hyperbolic embeddings, but neither outperforms SOTA. Novel methods include min-max
InfoNCE [41]], Euclidean-based losses [[1], and dimension-wise cosine similarity [56], achieving
competitive performance without softmax-crossentropy.

2.2 Semi-Supervised Contrastive Learning

Semi-supervised contrastive learning effectively leverages both labeled and unlabeled data to learn
meaningful representations. [57] introduced a framework with similarity co-calibration to mitigate
noisy labels by adjusting the similarity between pairs. [[19] proposed Generalized Contrastive Loss
(GCL), which unifies supervised and unsupervised learning for speaker recognition, while [24]
combined contrastive self-supervision with consistency regularization in SelfMatch. [37]] introduced
FixMatch, which combines pseudo-labeling with consistency regularization. In this approach,
weakly augmented samples generate pseudo-labels that guide strongly augmented versions, ensuring
robust semi-supervised learning (SSL) performance. [53]] enhanced SSCL by enforcing class-wise
consistency in learned representations, improving robustness to class imbalance and increasing
generalization across datasets. [S9] proposed SimMatch, a framework that unifies contrastive learning
and consistency regularization by optimizing both instance-level alignment and class-level semantic
consistency, leading to improved SSL feature representations. Building on this, [58] introduced
SimMatch-V2, refining the balance between contrastive and consistency learning objectives, further
enhancing transferability and performance in semi-supervised settings.

2.3 Dimensional Collapse

For dimensional collapse in contrastive learning, [21]] examine dimensional collapse in self-supervised
learning. They attribute this to strong augmentations distorting features and implicit regularization
driving weights toward low-rank solutions. Similarly, [S1] explore how simplicity bias leads to class
collapse and feature suppression, with models favoring simpler patterns over complex ones. They
suggest increasing embedding dimensionality and designing augmentation techniques that preserve
class-relevant features to counter this bias and promote diverse feature learning. [[11] emphasize the
role of data augmentation and loss design in preventing class collapse, proposing a class-conditional
InfoNCE loss term that uniformly pulls apart individual points within the same class to enhance class
separation. In supervised contrastive learning, [13] propose loss function modifications to follow
an ETF geometry by selecting prototypes that form this structure. In graph contrastive learning,
[39] introduce a whitening transformation to decorrelate feature dimensions, avoiding collapse and
enhancing representation capacity. Finally, [35] investigate the preference of contrastive learning
for content over style features, leading to collapse. They propose to leverage adaptive temperature
factors in the loss function to improve feature representation quality.

3 Motivation

This section investigates the cause of dimensional collapse in the perspective of learning rates. We
first demonstrate that dimensional collapse represents a local stationary point of the InfoNCE loss by
showing that linear embeddings result in a zero gradient (Lemma([T). While our demonstration utilizes
the InfoNCE loss, this conclusion generalizes to most current loss functions relying solely on cosine
similarity as their metric, encompassing unsupervised [16, |4} [7, |49} 55| 43| [277]], semi-supervised
[17,136], and supervised contrastive learning [23} (7133, [29]. Subsequently, we discuss how a large
learning rate induces a shift in the embedding mean through comparisons between pairs of negative
samples, ultimately leading to dimensional collapse.

The InfoNCE loss (Eq. (I)) aims to encourage the embeddings to form distinguishable clusters in
high-dimensional space, thereby facilitating classification for downstream models. However, in
Lemma|[I] we demonstrate that the worst-case scenario — where all embeddings become identical or
co-linear — also constitutes a local optimum for the InfoNCE loss. This observation suggests that,
from a theoretical perspective, InfoNCE exhibits instability, as both the best and worst solutions can
lead to stationary points.

Lemma 1. Let F : R™ — R™ be q family of Contrastive Learning structures, where m and m’
denote the dimensions of the inputs and embeddings, respectively. If a function f € F is trained
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Figure 1: Simulation with Repulsive Force on 50 simulated points in 50-dimensional space.

using the InfoNCE loss, then there exist infinitely many local stationary points where all embeddings
produced by f are all equal or co-linear.

The proof of LemmalI|relies on the observation that the embeddings are only compared against each
other. If all embeddings are either identical or co-linear, the gradient vanishes due to the lack of
angular differences, as well as the normalization process. The full proof is presented in Appendix [A]

The remainder of this section examines the role of a large learning rate in causing dimensional
collapse. To understand the dynamics of contrastive learning, it is crucial to consider two forces
acting on each embedding: the gravitational force within the same pseudo class and the repulsive
force between different pseudo classes. Contrary to the common belief that the gravitational force is
responsible for inducing collapse, we observe that the overshooting of the repulsive force could be
directly related to the dimensional collapse in contrastive learning.

To better illustrate the repulsive force, we conducted a simulation using 50 randomly generated
embeddings in 50-d space, where positive pairs initially coincide at a single point, reflecting a
scenario where the model has successfully merged augmented variants from the same input source
into one embedding. We subsequently performed gradient descent on these embeddings using the
InfoNCE loss with temperature of 0.1, recording the embedding trajectories throughout training.
The simulations were executed across three distinct learning rates: 0.01, 0.1, and 1. The embedding
singular value spectrum and the first two principal components of these embeddings are visualized in
Figure[I] Atlearning rates of 0.01 and 0.1, the repulsive force inherent to the InfoNCE loss effectively
redistributes the embeddings across a more uniform space, as indicated by the more evenly dispersed
singular values across the embedding dimensions. Conversely, at a learning rate of 1, the embeddings
fail to redistribute and instead collapse into a one-dimensional subspace, corroborating the stationary
point described by Lemma [T} Furthermore, analysis of the first two principal components clearly
illustrates a significant shift in the embedding mean and a reduction in variance throughout the
training iterations. This observation indicates that larger learning rates induce a substantial shift in
the embedding mean, consequently accelerating the collapse process by aligning gradients in similar
directions. Thus, establishing an upper bound on the learning rates is crucial, as it limits the shift in
embedding mean and would contribute to preventing dimensional collapse.

To better understand this phenomenon, we conducted a theoretical analysis of the gradient descent
process using the InfoNCE loss, detailed in Appendix [B] Briefly, our analysis reveals that, after
performing a single gradient descent step, the upper bound on the norm of the embedding mean is



scaled by the factor:
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where o represents the minimum embedding norm before normalization, and |/ is the number
of negative samples within the batch. To prevent an increase in the embedding mean’s norm, we
constrain this scaling factor to be less than or equal to 1. This constraint yields an optimal learning

rate range given by: n € [% (1 — %) 5 (1 + %)} . This suggests that, under the
assumption that positive sample pairs are successfully merged into the same embedding, the optimal

learning rate that reduce mean shift is 3.

4 CLOP: Populating Embedding Rank with Orthonormal Prototypes

To avoid the issue of embedding collapsing into a rank-1 linear subspace, we introduce a novel
approach that promotes point isolation by adding an additional term to the loss function for contrastive
learning. Specifically, we initialize a group of orthonormal prototypes. The number of orthonormal
prototypes matches the total number of classes in the dataset. We then maximize the similarity
between the orthonormal prototypes and the labeled samples in the training set.

Formally, let S be the labeled training set containing pairs of embeddings and labels, denoted as S =
{(zi,y:) | i € {1,...,|S|}}. The set of prototypes, denoted as C, is defined as C = {c1,...,c},
where k represents the number of classes in the dataset. To generate the prototypes C, we randomly
sample k i.i.d. vectors from an m/-dimensional space, where |z;| = m’. Subsequently, we apply
singular value decomposition (SVD) to obtain the orthonormal basis, denoted as C. This ensures that
each prototype c; is initialized as a unit vector, orthogonal to all other prototypes, at the beginning of
the training process. The CLOP loss is formulated as follows:

|S]
1
Lcrop = LinfoNcE + )\7|S| E (1 —5(zi,cy,)), 2
im1

where s(-, -) denotes the similarity metric, typically chosen to be the same as that used in LinfoNCE,
namely cosine similarity.

The primary objective of the CLOP loss is to align all embeddings corresponding to the same class
towards a common target prototype, c,,. Beyond the “gravitational force" and “repulsive force"
provided by the main contrastive loss, the CLOP loss introduces a supervised “pulling force" that
prevents collapse by pulling labeled embeddings into class-specific orthogonal subspaces. It is
important to note that, without additional constraints, samples outside of set S may still converge to
other unspecified embeddings, potentially collapsing into a rank-1 subspace. However, a fundamental
assumption in contrastive learning is that augmented samples are treated as being drawn from the
same distribution as the original input data from the same class. Thus, the “gravitational force”
between embeddings of the same class should pull unsupervised embeddings toward the target
prototypes.

To assess the supervisory efficacy of CLOP, we visualized the CIFAR100’s representations learned
by both CLOP and SupCon under two label regimes (10% and 100%) in Table [I] Embeddings were
projected to two dimensions using t-distributed Stochastic Neighbor Embedding (t-SNE) [42], and we
also examined each model’s singular value spectrum. Both methods employ a ResNet-50 backbone
with linear projection heads four times wider than standard (denoted as ResNet-50 (4x)), trained for
500 epochs with a batch size of 256 and an initial learning rate of 1.0. CLOP yields a higher effective
rank in its embedding space and produces more compact, well-separated clusters under both limited
(10%) and full (100%) supervision. Quantitatively, linear fine-tuning on ImageNet confirms this
advantage: at 10% label usage, CLOP achieves a top-1 accuracy of 59.57%, outperforming SupCon’s
55.01% by 4.56%; at 100% label usage, CLOP reaches 82.06% versus SupCon’s 74.75%, a gain of
7.31%. This experiment is conducted on a single NVIDIA A100 GPU, with each run completing
within 4 hours of training.
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Table 1: SupCon vs. CLOP under different label usage
Methods 10% Labels ~ 50% Labels Methods 10% Labels  50% Labels
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5
SupCon 0.595 0.865 0.625 0.884 SupCon 0.704 0.874 0.734 0.830
FixMatch 0.588 0.883 0.611 0.887 FixMatch 0.720 0.886 0.774 0911
SsCL 0.715 0.829 0.746 0.887 SsCL 0.721 0.909 0.786 0.899
CCSSL 0.735 0.841 0.757 0.894 CCSSL 0.751 0.923 0.771 0.907

SimMatch 0.719 0.829 0.724 0.866 SimMatch 0.740 0930 0.776 0.904
SimMatch-V2 0.729 0.840 0.729 0.877 SimMatch-V2 0.748 0.917 0.788 0.916

CLOP 0.743 0904 0.76 0.92 CLOP 0.791 0.927 0.829 0.949

Table 2: Top-1 and Top-5 accuracy on CIFAR-  Table 3: Top-1 and Top-5 accuracy on ImageNet.
100.

5 Experiment

In this section, we evaluate the performance of CLOP in various learning settings. First, we compare
CLOP against existing semi-supervised contrastive learning methods on image classification tasks.
Furthermore, we show that CLOP consistently outperforms competitors under both balanced and
imbalanced class distributions. Next, we highlight the generalizability of CLOP by presenting its
outstanding transfer learning results on image classification and object detection tasks. Finally, we
conduct extensive ablation studies on key hyperparameters, including learning rate, batch size, A,
similarity metrics, and augmentation strategies, highlighting CLOP’s robustness to varying learning
rates and its effectiveness in small-batch learning.

5.1 Semi-Supervised Image Classification

For balanced-class training, we utilize the full CIFAR-100 [26] and ImageNet [8] datasets, consid-
ering scenarios where either 10% or 50% of labels are available for contrastive learning. CLOP is
implemented with a ResNet-50 (4x) backbone using the SimCLR loss function. We benchmark CLOP
against several state-of-the-art semi-supervised contrastive learning methods, including SupCon [23]],
FixMatch [37], SsCL [57], CCSSL [53]], SimMatch [39]], and SimMatch-V2 [38]]. The classification



Methods CIFAR-100 ImageNet-200 ImageNet
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

SupCon 0.585 0.858 0.505 0.749 0.672 0.780
FixMatch 0.576  0.840 0.621 0.759 0.708 0.860
SsCL 0.719 0.860 0.585 0.733 0.730 0.862
CCSSL 0.744 0.874 0.631 0.889 0.710 0.865

SimMatch 0.685 0.829 0.527 0.768 0.705 0.855
SimMatchV2  0.689 0.862 0.659 0.846 0.733 0.845

CLOP 0.763 0918 0.689 0.898 0.799 0.932

Table 4: Top-1 and Top-5 accuracy on CIFAR-100, ImageNet-200, and ImageNet under imbalanced-
class training.

Method Food CIFAR10 CIFAR100 SUN397 DTD Caltech-101 Flowers
SimCLR 0.8820 0.9770 0.8590 0.6350 0.7320 0.9210 0.9700
SupCon 0.8723 0.9742 0.8427 0.5804 0.7460 0.9104 0.9600
FixMatch 0.8824  0.9639 0.8553 0.5774 0.7269 0.9123 0.9669
SsCL 0.8546  0.9866 0.8481 0.5800 0.7300 09115 0.9574
CCSSL 0.8663 0.9637 0.8352 0.5818 0.7270 0.9029 0.9456
SimMatch 0.8881 0.9759 0.8435 0.6004 0.7306 0.9013 0.9646

SimMatch-V2 0.8568  0.9638 0.8270 0.5886  0.7526 0.9185 0.9613
CLOP (this paper) 0.8792  0.9989 0.8809 0.6267 0.7385 0.9331 0.9718

Table 5: Transfer learning results for classification tasks (pretrained on ImageNet). Numbers are
mean-per-class accuracy for Caltech and Flowers; and top-1 accuracy for all other datasets.

results for CIFAR-100 and ImageNet are presented in Table 2] and Table [3] respectively. Our findings
indicate that CLOP consistently outperforms all competing methods across all experimental settings.
Notably, on CIFAR-100, CLOP achieves the highest Top-1 accuracy of 0.743 with only 10% of
labels and maintains a strong lead at 0.760 with 50% labels, while also significantly improving Top-5
performance. On ImageNet, CLOP achieved a Top-1 accuracy of 0.791 at 10% label availability and
0.829 at 50%, outperforming the next best methods by margins of over 4% in some cases.

For imbalanced-class training, we generate class-wise sample ratios by sampling from a uniform
distribution in the range of [0.001, 1], while maintaining all other experimental settings identical to
the balanced-class training setup. The results are presented in Table [} demonstrating that CLOP
significantly outperforms all benchmark methods.

Method Birdsnap  Cars  Aircraft VOC2007  Pets

SimCLR 0.7590 09130 0.8785 0.8410  0.8920
SupCon 0.7515 09169 0.8409 0.8517 0.9347
FixMatch 0.7545  0.9004 0.8462 0.8372  0.9515
SsCL 0.7343  0.9089 0.8341 0.8504  0.9288
CCSSL 0.7613  0.9247 0.8528 0.8580  0.9471
SimMatch 0.7562 09127 0.8269 0.8393 0.9200
SimMatchV2  0.7516  0.9186  0.8453 0.8546  0.9494
CLOP 0.7794 09171 0.8810 0.8646  0.8982

Table 6: Transfer learning results for objects detection task (pretrained on ImageNet). Numbers are
mAP for VOC2007; mean-per-class accuracy for Aircraft and Pets; and top-1 accuracy for Birdsnap.



Statistic Non-Orthonormal Prototypes Orthonormal Prototypes

Mean 0.768 0.780
Median 0.762 0.781
Std 0.015 0.009
Lower Quantile 0.760 0.775
Upper Quantile 0.775 0.786

Table 7: Ablation study on the effect of prototype initialization. We compare non-orthonormal
and orthonormal initialization over 10 independent runs on CIFAR-100 under the full label setting.
Results report the distribution statistics of Top-1 classification accuracy.

5.2 Transfer Learning on Image Classification and Object Detection

To assess CLOP’s generalization capability on unseen datasets, we conduct transfer learning ex-
periments on both image classification and object detection tasks. Specifically, we first pretrain
the ResNet-50 (4x) backbone using various contrastive loss functions on ImageNet with all labels.
Subsequently, we replace the projection head with either a one-layer prediction head or a two-layer
object detection head with ReLU activation and fine-tune the network on the nature image datasets,
including Food [3]], CIFAR-10 [25], CIFAR-100 [26], SUN397 [47]], DTD [34], Caltech-101 [10],
Flowers [31], Birdsnap [2]], Cars [54]], Aircraft [30], VOC2007 [9], Pets [32]. For image classification
tasks, we report the accuracy results in Table E} Following the standard evaluation metrics in [4} 23],
we present mean-per-class accuracy for Caltech and Flowers, while reporting top-1 accuracy for all
other datasets. The results indicate that CLOP generally outperforms competing methods. Although
SimMatch and SimMatch-V2 achieve slightly higher accuracy on the Food and DTD datasets, the
performance gain is less than 2%. In contrast, CLOP surpasses these methods on the remaining four
datasets, with the most significant improvement exceeding 3.5% on CIFAR-100. For object detection
tasks, we report mean average precision (mAP) for VOC2007, mean-per-class accuracy for Aircraft
and Pets, and top-1 accuracy for Birdsnap. The results, presented in Table[6] demonstrate that CLOP
outperforms competing methods on three out of five datasets.

5.3 Ablation Studies

In this section, we present the experimental results for image classification, conducted with various
batch sizes and learning rates on the CIFAR-100 and ImageNet datasets. For baseline methods, we
implement the InfoNCE [46] with a supervised linear classifier for semi-supervised learning and the
SupCon [23] for fully-supervised learning. All experiments are performed using the SImCLR [4]
framework with ResNet-50 (4x) [15].

Effect of Prototype Initialization. To assess the impact of prototype initialization in our framework,
we conduct an ablation study comparing non-orthonormal prototypes with orthonormal prototypes on
CIFAR-100 under full supervision. As shown in Table[7] initializing prototypes with orthonormal
vectors consistently yields better performance across all statistical measures. Specifically, orthonormal
initialization improves the mean top-1 accuracy from 0.768 to 0.780 and reduces the standard deviation
from 0.015 to 0.009, indicating both improved performance and training stability.

Orthonormal (CLOP) vs ETF prototypes. To ensure a fair comparison with ETF, we also evaluate
performance using ETF prototypes as an alternative to the orthonormal prototypes. For fully-
supervised learning, we utilize all labels in the training datasets for both SupCon and CLOP. In the
semi-supervised setting, we employ 10% of the labeled data for both linear classifier and CLOP
training. We report both top-1 classification accuracy on ImageNet in Figure [2| and accuracies on
CIFAR100 and Tiny-ImageNet in Appendix [Clusing the supervised linear classifier.

CLOP Prevents Collapse with Large Learning Rates. We trained models with learning rates
ranging from 0.1 to 10 on CIFAR-100 and ImageNet for 200 epochs and Tiny-ImageNet for 100
epochs, using a batch size of 1024. The corresponding classification accuracies are presented in
Figure[2]and[3] Across both datasets, CLOP consistently outperforms the baseline methods. Moreover,
as demonstrated by Section [3] excessively large learning rates can lead to complete collapse, as
clearly observed in the baseline methods at a learning rate of 10 on both datasets. However, with
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Figure 2: Top-1 classification accuracy on ImageNet across different learning rates and batch sizes.
The percentage of labels used for supervised training is indicated in the legend.

Table 8: Ablation studies on A, similarity metric for CLOP, and augmentation strategies.
(a) Acc of different \. (b) Acc of different similarity metric. (c) Acc of augmentation strategies.

A Top-1 Top-5 Similarity Metric Top-1 Top-5  Augmentation Top-1 Top-5

0.1 0.745 0.935 Cosine 0.754 0.938 AutoAugment 0.625 0.847
0.5 0.740 0.931 Euclidean 0.749 0933  SimCLR 0.754 0.938
1.0 0.754 0938  Manhattan 0.715 0.899  RandAugment 0.726 0.899

1.5 0.760 0.937

the incorporation of CLOP into the loss function, we observe a significantly smaller performance
degradation on both datasets.

CLOP Enables Smaller Batch Sizes. We trained models with batch sizes of 32, 64, 128, 256, 512,
1024, and 2048 on CIFAR-100 and ImageNet for 200 epochs and on Tiny-ImageNet for 100 epochs.
The learning rate was fixed at (0.3 x batch size/256) for optimal performance. The corresponding
classification accuracies are presented in Figure 2] and f] CLOP consistently outperformed the
baseline methods across all batch sizes. As reported in the original papers [4} 23], contrastive learning
performs optimally when the batch size exceeds 1024, a finding corroborated by our experiments.
However, with the addition of CLOP, we observe significantly less performance degradation at smaller
batch sizes. Remarkably, CLOP achieved similar accuracy with a batch size of 32 compared to the
baseline SupCon with a batch size of 2048 for CIFAR-100.

Tuning A\. To evaluate the sensitivity of the tuning parameter A in CLOP, we trained the model
with SupCon loss across different A values, keeping the batch size fixed at 1024. The classification
accuracy on both CIFAR-100 is reported in Table [8(a)] We observe that the performance remains
stable for X\ values ranging from 0.1 to 1.5, with A = 1.0 and A = 1.5 yielding the best overall
performance.

Choice of Similarity Metric. To evaluate the impact of different similarity functions on Eq. (2)),
we trained the same ResNet-50 (4x) architecture on CIFAR-100 using cosine similarity, Euclidean
similarity, and Manhattan similarity. The results, presented in Table [§(b)} indicate that cosine
similarity, which aligns with L, in Eq. (@), achieves the highest performance.

Augmentation Strategies. To evaluate the impact of augmentation strategies on CLOP, we trained the
same ResNet-50 (4x) model on CIFAR-100 with a batch size of 1024. We selected three commonly
used augmentation methods: 1) RandAugment: Augmentation with three operations randomly chosen
from all image processing functions in PyTorch (e.g., padding, resizing, cropping, rotation, color jitter,
Gaussian blur, inversion, contrast adjustment, equalization); 2) AutoAugment using the ImageNet
policy proposed in [6]; 3) SimCLR Augmentation Policy from [4]. The results are shown in Table
indicate that SimCLR augmentation works best with CLOP.

6 Conclusion and Limitations

In this paper, we addressed the issue of dimensional collapse in contrastive learning by analyzing the
impact of learning rates on representation stability. We identified a critical threshold beyond which
standard contrastive objectives, particularly those based on cosine similarity, converge to degenerate
low-rank solutions. Motivated by this observation, we proposed CLOP, a novel semi-supervised loss
function that encourages embeddings to align with a set of orthonormal prototypes. By explicitly



promoting the formation of class-specific orthogonal subspaces, CLOP enhances the expressiveness
and separability of learned representations. Empirical results across a range of classification and
object detection benchmarks validate the effectiveness of CLOP. The method consistently outperforms
strong baselines under both balanced and imbalanced label regimes, and demonstrates robustness
across varying learning rates and batch sizes.

Despite these promising results, CLOP assumes a fixed number of well-separated classes and relies
on static prototype initialization, which may limit its applicability in fine-grained or evolving-label
scenarios. Future work could explore adaptive prototype mechanisms and extend the approach to
tasks involving hierarchical or multi-label structures.
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A Proof of Lemmal(l

Proof of Lemma E] Consider £; as the i-th loss term of LiyencE, defined by the following expression:
L;:=—logP;

where IP; denotes the probability that i-th embedding choose its positive pair as closest neighbor:

exp(z] 2;()/T)

Pi =
exp(z, zj(;)/T) + Zag{i,j(i)} exp(z] 24 /7)

As detailed in [55]], the gradient of £; with respect to z;, z j(4)» and z,, can be derived as follows:

T
- ?951 =U=R)/m{me - > é%P(Z;;;{ZTT)Z )
¢ ag{i,j(i)y ~bg{ii()} i “b

oL;  (1—-1Py)

a 0z N
oL,  (1-P) exp(z; 24/7) _
0z, T Zbe{i,j(i)} exp(z] z/7) "

In the standard setup of self-supervised learning, for any sample, there is one positive pair among [
and the remainder are all negative pairs. By aggregating all the gradient respect to a single sample,
we have the gradient of InfoNCE respect to z;:
OLmionce (1 =P;) + (1 = Py;)) (1-P) exp(z; 24 /7)

- = Zj()— Z

: T
0z; T wttigen T Db (i (i)} €XP(2; Zo/T

)

3 Z (1-1,) exp(z; 2,/7) ,
ag{i,j (i)} 2bg{ag(a)y XP(2q 2/T)

Now, considering the first scenario, where all embeddings equal, that means that z; = z;;) = z, =
z* for all a € I, the loss terms P;, ;;), and P, converge to a constant P*, given by:

1
P,=P;y =P, =—1o = P*
i 3(@@) a & 11| —1
Consequently, the gradient of Lye,nce With respect to z; under this assumption reduces to zero,
aligning with our expectations:

_ OLwonce _ 2(1 —P7)

_ N Gl AN |
wonce _ 20 a1 - )

E— p—
—2"

We establish the existence of local minima in scenarios where all embeddings are identical. Now, we
consider the second scenario where all embeddings generated reside within the same rank-1 subspace.
Denoting z* as their unit basis, we can represent each embedding z; as:

z; =az", ac{-1,1}, Vi
The gradient of the loss function LygNnce With respect to z; simplifies to:
oL
- 0z, = fBz;

Here, (3 is a scalar that aggregates contributions from all relevant weights.

It is important to note that z’ represents the normalized output of the function f, with x; denoting the
original, unnormalized embedding. This implies the following relation:

oL 0LOz; 1 (]I Xixj)ﬂz-— B (z- X; >—O
0x; 0z; 0%;  ||xill2 Ixill3/) 77 dxilla \7° 0 [1xall2 ’

where I represents the identity matrix.
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B Gradient Analysis of Repulsive Force from InfoNCE Loss

Recall that

exp(z; zj(;)/T)
L; = log
infoNCE = ; Za;ﬂ exp(z Za/T)

Assume that the model can successfully merge the positive pair into the same embedding, the loss of
repulsive becomes:

exp(1/7)
Ere ulsive — — log
' gé; Lairii) XP(2] 2a/T) + exp(1/7)

We start by rewriting the loss for a given sample i:
exp(1/7)
exp(l/7) + ZaGN(i) exp (ziTza/T)

éi = —log

)

where we denote
N(@):={a:a#ianda # j(i) }.
Define the denominator
D, :=exp(1/7) + Z exp(z za/7'>
a€N ()

Then
£; = log [DZ} - %

Define P;, as the probability that sample ¢ choose sample a as closest neighbor,

exp (zjzaﬁ') exp (zjza/7'>
Py = =

exp(1/7) + 3 eni) €XP (ziTza/T) D;

Taking the gradient of ¢; with respect to z;,

0 1
oz, exp (Z?ZG/T) = _exp (ZIZa/T) Zq
Thus, differentiating the log term gives:
o, 1
8ZZ D Z)exp(z Za/T)
Rewriting in terms of the softmax probablhtles

azl Z Pza Zg,

Taej\/ (4)

Taking the gradient of ¢; with respect to z,,

0 1
oz, exp (Z;rza/7'> = —exp (ZZTZQ/T) Z;
Thus, differentiating the log term gives:

%z il exp (Z-Tza/7'> Z;.

(9za Dl T ¢
Rewriting in terms of the softmax probabilities,
oL, 1
8zz - ;Pm Zi-
a
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Therefore, the gradient of Erepulsive iS'
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Since the probability matrix P is obviously symmetric
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Thus, for the gradient of the before the normalization,
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Given the first iteration of points as {x?}, then, after the first iteration of descent, the next embeddings
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Thus, the mean of x} can be calculated as:
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Since the negative pair relationship is symmetric, ie. a € N (i) <= i € N(a), then
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Since —1 < z; z, < 1, Denote
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And we can lowerbound sum of probability by

S b Saene (@) Wieetn) W
WX () + e exp((@)T()/r) T P/ 4 Nexp(l/r) 14 N
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If we want to limit the increase of mean, we want the coefficient to be less than 1, which means that
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C Extra Experiments on CLOP
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Figure 3: Top-1 classification accuracy across different learning rates. The percentage of labels used
for supervised training is indicated in the legend.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Refer to Abstract.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to Section[@l
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Refer to Section 3] where the range of the learning rate is derived under the
assumption that positive sample pairs are successfully merged into the same embedding.
Proof can be found in Appendix [A]and Appendix [B]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The formulation is explained in Section[d] and the model’s backbone structure
is explained in Section [5}

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Refer the the supplemental codes and readme file.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Refer to Section[5.3]for ablation studies on the choice of model configuration.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Refer to Section[5] Appendix[C]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please refer to the last paragraph of Sectiond] This paper adopts the Sim-
CLR framework with minor modifications that do not introduce significant computational
overhead or affect memory usage and execution time; see [4]] for further information.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research is conducted following the code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper aims to improve current semi-supervised learning accuracy in
vision-related tasks. The authors do not anticipate any direct societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The release of the model does not have a high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Refer to Section
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The released code is well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about answerNA (if any)?

Answer: [NA]
Justification: No crowdsourcing experiment is involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: No important, original, or non-standard component of the core methods in this
research is involved with LLM usage.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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